Have a personal or library account? Click to login
Fractional Simpson like type inequalities for differentiable s-convex functions Cover

Fractional Simpson like type inequalities for differentiable s-convex functions

By: N. Kamouche,  S. Ghomrani and  B. Meftah  
Open Access
|Jul 2022

References

  1. M. A. Ali, H. Kara, J. Tariboon, S. Asawasamrit, H. Budak and F. Hezenci, Some New Simpson’s-Formula-Type Inequalities for Twice-Differentiable Convex Functions via Generalized Fractional Operators. Symmetry, 13 (2021), no. 12, 2249.10.3390/sym13122249
  2. M. U. Awan, M. Z. Javed, M. Th. Rassias, M. A. Noor and K. I. Noor, Simpson type inequalities and applications. J. Anal. 29 (2021), no. 4, 1403–1419.10.1007/s41478-021-00319-4
  3. N. Azzouza and B. Meftah, Some weighted integral inequalities for differentiable beta-convex functions. J. Interdiscip. Math. 24 (2021), no. 5, 1-22.
  4. H. Budak, F. Hezenci and H. Kara, On parameterized inequalities of Ostrowski and Simpson type for convex functions via generalized fractional integrals. Math. Methods Appl. Sci. 44 (2021), no. 17, 12522–12536.10.1002/mma.7558
  5. H. Budak, F. Hezenci and H. Kara, On generalized Ostrowski, Simpson and trapezoidal type inequalities for co-ordinated convex functions via generalized fractional integrals. Adv. Difference Equ. 2021, Paper no. 312, 32 pp.10.1186/s13662-021-03463-0
  6. W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen. (German) Publ. Inst. Math. (Beograd) (N.S.) 23 (37) (1978), 13-20.
  7. T. Chiheb, N. Boumaza and B. Meftah, Some new Simpson-like type inequalities via preqausiinvexity. Transylv. J. Math. Mech.12 (2020), no.1, 1-10.
  8. F. Hezenci, H. Budak and H. Kara, New version of fractional Simpson type inequalities for twice differentiable functions. Adv. Difference Equ. 2021, Paper no. 460, 10 pp.10.1186/s13662-021-03615-2
  9. İ. İşcan, Hermite-Hadamard and Simpson-like type inequalities for differentiable harmonically convex functions. J. Math. 2014, Art. ID 346305, 10 pp.10.1155/2014/346305
  10. A. Kashuri, B. Meftah and P.O. Mohammed, Some weighted Simpson type inequalities for differentiable s-convex functions and their applications. J. Frac. Calc. &Nonlinear Sys.1 (2021) no. 1, 75-94.10.48185/jfcns.v1i1.150
  11. A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.
  12. U. S. Kirmaci, Refinements of Hermite-Hadamard type inequalities for s-convex functions with applications to special means. Univ. J. Math. App, 4 (2021), no.3, 114-124.10.32323/ujma.953684
  13. W. Liu, Some Simpson type inequalities for h-convex and (α,m)-convex functions. J. Comput. Anal. Appl. 16 (2014), no. 5, 1005–1012.
  14. C. Y. Luo, T. S. Du, M. Kunt and Y. Zhang, Certain new bounds considering the weighted Simpson-like type inequality and applications. J. Inequal. Appl. 2018, Paper no. 332, 20 pp.10.1186/s13660-018-1924-3
  15. J. E. Pečarić, F. Proschan and Y. L. Tong, Convex functions, partial orderings, and statistical applications. Mathematics in Science and Engineering, 187. Academic Press, Inc., Boston, MA, 1992.
  16. M. Z. Sarikaya, E. Set and E.Özdemir, On new inequalities of Simpson’s type for convex functions, RGMIA Research Report Collection, 13 (2010), no.2, article 2.
  17. Y. Shuang, Y. Wang and F. Qi, Integral inequalities of Simpson’s type for (α,m)-convex functions. J. Nonlinear Sci. Appl. 9 (2016), no. 12, 6364–6370.10.22436/jnsa.009.12.36
  18. X. You, F. Hezenci, H. Budak and H. Kara, New Simpson type inequalities for twice differentiable functions via generalized fractional integrals. AIMS Math. 7 (2022), no. 3, 3959–3971.10.3934/math.2022218
DOI: https://doi.org/10.2478/jamsi-2022-0006 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 73 - 91
Published on: Jul 4, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 N. Kamouche, S. Ghomrani, B. Meftah, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons Attribution 4.0 License.