Have a personal or library account? Click to login
Model choice for regression models with a categorical response Cover

Model choice for regression models with a categorical response

By: J. Kalina  
Open Access
|Jul 2022

References

  1. Agresti, A. 2002. Categorical data analysis, 2 ed. Wiley, Hoboken.10.1002/0471249688
  2. Ahrens, A., Hansen, C., and Schaffer, M. 2020. Lassopack: Model selection and prediction with regularized regression in §tata. The Stata Journal 20, 176–235.10.1177/1536867X20909697
  3. Akaike, H. 1973. A new look at the statistical model identification. IEEE Transactions of Automatic Control 19, 716–723.10.1109/TAC.1974.1100705
  4. Breiman, L. 1996. Heuristics of instability and stabilization in model selection. Annals of Statistics 24, 2350–2383.10.1214/aos/1032181158
  5. Cortez, P., Cerdeira, A., Almeida, F., Matos, T., and Reis, J. 2009. Modeling wine preferences by data mining from physicochemical properties. Decision Support Systems 47, 547–553.10.1016/j.dss.2009.05.016
  6. Dua, D. and Graff, C. 2017. UCI machine learning repository.
  7. Fernández, D., Liu, I., Costilla, R., and Gu, P. 2020. Assigning scores for ordered categorical responses. Journal of Applied Statistics 47, 1261–1281.10.1080/02664763.2019.1674790
  8. Głuszak, M. 2015. Multinomial logit model of housing demand in Poland. Real Estate Management and Valuation 23, 84–89.10.1515/remav-2015-0008
  9. Harrell, F. 2015. Regression modeling strategies with applications to linear models, logistic and ordinal regression, and survival analysis, 2 ed. Springer, Cham.10.1007/978-3-319-19425-7
  10. Hasan, A., Wang, Z., and Mahani, A. 2016. Fast estimation of multinomial logit models: R package mnlogit. Journal of Statistical Software 75, 1–24.10.18637/jss.v075.i03
  11. Heinze, G., Wallisch, C., and Dunkler, D. 2018. Variable selection—a review and recommendations for the practicing statistician. Biometrical Journal 60, 431–449.10.1002/bimj.201700067
  12. Horváthová, J. and Mokrišová, M. 2020. Comparison of the results of a data envelopment analysis model and logit model in assessing business financial health. Information 11, 160.10.3390/info11030160
  13. Hosmer, D. 2000. Applied logistic regression, 2 ed. Wiley, Hoboken.10.1002/0471722146
  14. Inekwe, J., Jin, Y., and Valenzuela, M. 2018. The effects of financial distress: Evidence from US GDP growth. Economic Modelling 72, 8–21.10.1016/j.econmod.2018.01.001
  15. Irfan, M., Saha, S., and Singh, S. 2018. A random effects multinomial logit model for the determinants of exit modes. evidence from a panel of us manufacturing firms. Journal of Economic Studies 45, 791–809.10.1108/JES-03-2017-0075
  16. Kalina, J. and Schlenker, A. 2015. A robust supervised variable selection for noisy high-dimensional data. BioMed Research International 2015, 320385.10.1155/2015/320385
  17. Kalina, J., Vašaničová, P., and Litavcová, E. 2019. Regression quantiles under heteroscedasticity and multicollinearity: Analysis of travel and tourism competitiveness. Ekonomický časopis/Journal of Economics 67, 69–85.
  18. Kim, S. 2017. Ordinal time series model for forecasting air quality index for ozone in southern california. Environmental Modeling & Assessment 22, 175–182.10.1007/s10666-016-9521-7
  19. Poplaski, S., Kemnitz, R., and Robb, C. 2019. Investing in education: Impact of student financial stress on self-reported health. Journal of Student Financial Aid 48, 3.10.55504/0884-9153.1611
  20. R Core Team. 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
  21. Rao, C. 1973. Linear statistical inference and its applications, 2 ed. Wiley, New York.10.1002/9780470316436
  22. Sarrias, M. and Daziano, R. 2017. Multinomial logit models with continuous and discrete individual heterogeneity in r: The gmnl package. Journal of Statistical Software 19, 1–46.10.18637/jss.v079.i02
  23. Shirk, A., Landguth, E., and Cushman, S. 2018. A comparison of regression methods for model selection in individual-based landscape genetic analysis. Molecular Ecology Resources 18, 55–67.10.1111/1755-0998.12709
  24. Su, Z., Bao, H., Li, Q., Xu, B., and Cui, X. 2022. The prediction of price gap anomaly in Chinese stock market: Evidence from the dependent functional logit model. Finance Research Letters. In press.10.1016/j.frl.2022.102702
  25. Tutz, G. 2021. Uncertain choices: The heterogeneous multinomial logit model. Sociological Methodology 51, 86–111.10.1177/0081175020979689
  26. Wang, K., Ye, X., Pendyala, R., and Zou, Y. 2017. On the development of a semi-nonparametric generalized multinomial logit model for travel-related choices. PLoS ONE 12, e0186689.10.1371/journal.pone.0186689
  27. Xu, J., Bauldry, S., and Fullerton, A. 2022. Bayesian approaches to assessing the parallel lines assumption in cumulative ordered logit models. Sociological Methods & Research. In press.
  28. Yan, D. and Yang, Y. 2021. A stochastic user equilibrium formulation for the cumulative prospect theory-based cross-nested logit. Discrete Dynamics in Nature and Society 2021, 9929015.10.1155/2021/9929015
  29. Yee, T. W. 2010. The VGAM package for categorical data analysis. Journal of Statistical Software 32, 10, 1–34.10.18637/jss.v032.i10
DOI: https://doi.org/10.2478/jamsi-2022-0005 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 59 - 71
Published on: Jul 4, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 J. Kalina, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons Attribution 4.0 License.