Have a personal or library account? Click to login
Asymptotic expectation of protected node profile in random digital search trees Cover

Asymptotic expectation of protected node profile in random digital search trees

Open Access
|Jul 2022

References

  1. L. Devroye and S. Janson, Protected nodes and fringe subtrees in some random trees, Electron. Commun. Probab, 19 (2014), 1–10.
  2. M. Drmota, Random trees: An interplay between combinatorics and probability, SpringerWienNewYork, Vienna, 2009.10.1007/978-3-211-75357-6
  3. M. Drmota and W. Szpankowski, The expected profile of digital search trees, J. Combin. Theory Ser. A, 118 (2011), 1939–1965.10.1016/j.jcta.2011.04.001
  4. M. Drmota, M. Fuchs, H.K. Hwang and R. Neininger, Node profiles of symmetric digital search trees, https://arxiv.org/abs/1711.06941, submitted (2020), 41 pages.
  5. P. Flajolet, X. Gourdon and P. Dumas, Mellin transforms and asymptotics: harmonic sums, Theoret. Comput. Sci., 144 (1995), 3–58,.
  6. P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, 2009.10.1017/CBO9780511801655
  7. M. Fuchs, C.-K. Lee and G.-R. Yu, On 2-protected nodes in random digital trees, Theor. Comput. Sci., 622 (2016), 111–122.10.1016/j.tcs.2016.02.007
  8. P. Jacquet and W. Szpankowski, Analytical depoissonization and its applications, Theoret. Comput. Sci. 201 (1998), 1–62.10.1016/S0304-3975(97)00167-9
  9. M. Javanian, Protected node profile of tries, Discrete Mathematics & Theoretical Computer Science, 20 (2018), 1–20.
  10. M. Javanian, R. Imany Nabiyyi and J. Toofanpour, Protected node profile in recursive trees, Theory of Probability and Its Applications, accepted, 2021.
  11. R. Kazemi and M. Vahidi-Asl, The variance of the profile in digital search trees, Discrete Math. Theor. Comput. Sci., 13 (2011), 21–38.
  12. D.E. Knuth, The art of computer programming, Volume 3: sorting and searching, Addison Wesley Longman Publishing Co., Inc. Redwood City, CA, USA, 1998.
  13. Du. Rosena R.X. and H. Prodinger, Notes on protected nodes in digital search trees, Appl. Math. Lett., 25 (2012), 1025–1028.10.1016/j.aml.2011.11.017
  14. G. Louchard, Exact and asymptotic distributions in digital and binary search trees, RAIRO Theor. Inform. Appl., 21 (1987), 479–495.10.1051/ita/1987210404791
  15. H. M. Mahmoud, Evolution of random search trees, John Wiley & Sons Inc., New York, 1992.
  16. A. Magner, W. Szpankowski, Profile of PATRICIA tries, Algorithmica, 80 (2018), 331–397.10.1007/s00453-016-0261-5
  17. G. Park, H.-K. Hwang, P. Nicodème and W. Szpankowski, Profile of tries, SIAM J. Comput., 38 (2009), 1821–1880.10.1137/070685531
  18. W. Szpankowski, Average case analysis of algorithms on sequences, Wiley, New York, 2001.10.1002/9781118032770
  19. V. M. Zolotarev, Approximation of the distributions of sums of independent random variables with values in infinite-dimensional spaces, Theory Probab. Appl., 21 (1976), 721–737.10.1137/1121086
  20. V. M. Zolotarev, Ideal metrics in the problem of approximating the distributions of sums of independent random variables, Theory Probab. Appl., 22 (1977), 433–339,.10.1137/1122056
DOI: https://doi.org/10.2478/jamsi-2022-0004 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 43 - 57
Published on: Jul 4, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 M. Javanian, R. Imany Nabiyyi, J. Toofanpour, M. Q. Vahidi-Asl, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons Attribution 4.0 License.