Have a personal or library account? Click to login

Restructured class of estimators for population mean using an auxiliary variable under simple random sampling scheme

Open Access
|Dec 2021

References

  1. A. K. Kel’mans, Properties of the characteristic polynomial of a graph, Kibernetiky na Slŭ Kommunizmu, Emergija, Markova-Leningrand, 4(1967), 27-41(in Russian).
  2. B. Prashanth, K. Nagendra Naik, K. R. Rajanna, A remark on eigen values of Signed graph, Journal of Applied Mathematics, Statistics and Informatics15(1) (2019), 33-42. (ISSN (print): 1336-9180,(ISSN (on-line): 1339-0015, Poland)).
  3. C. S. Oliveria, N. M. Maia de Abreu, S. Jurkiewicz, The Characteristic Polynomial of the Laplacian of graphs in(a,b)-linear classes, Linear Algebra and its Applications. 356,113-121 (2002), (ISSN:0024-3795).
  4. D. Cvetkovic, P. Rowlinson, S. Simi’c: An Introduction to the Theory of Graph Spectra. Cambridge University Press, Cambridge(2010).
  5. F. Harary, R. Z. Norman and D. W. Cartwright, Structural models: An introduction to the theory of directed graphs, Wiley Inter-Science, Inc., New York, 1965.
  6. F. Harary, Graph Theory, Addison-Wesley Publishing Co., 1969.
  7. F. Harary, On the notion of balance of a signed graph, Michigan Math. J., 2(1953), 143-146.
  8. F. Harary and J. A. Kabell, Counting balanced signed graphs using marked graphs, Proc. Edinburgh Math. Soc., 24 (2)(1981), 99-104.
  9. F. Belardo and S. K. Simic, On the Laplacian coe cients of signed graphs, Linear ALgebra and its Applications,475 (2015), 94-113. (ISSN:0024-3795).
  10. G. T. Chartrand, Graphs as Mathematical Models, Prindle, Weber & Schmidt, Inc., Boston, Massachusetts 1977.
  11. G. Davis, G. Chen, F. Hall, Z. Li, M. Stewart and K. Patel, An interlacing result on normalized Laplacian, SIAM J. Discrete Math. 18(2004),353-361.
  12. I. M. Mladenov, M. D. Kotarov and J. G. Vassileva Popova, Method for Computing the Characteristic Polynomial, International Journal of Quantum Chemistry. 10(8),339-341 (1980), (ISSN:0020-7608-80).
  13. J. P. Grossman, An eigenvalue bound for the Laplacian of a graph, Discrete Math. 300 (2005), 225-228.
  14. M. J. Rosenberg and R. P. Abelson, Symbolic psycho-logic: A model of attitudinal cognition, Behav. Sci., volume 3, p. 1-13(1958).
  15. T. Zaslavsky, signed graphs, Discrete Appl. Math., 4(1)(1982), 47-74.
  16. Y. Hou, Y. Pan and J. Li On the Laplacian Eigenvalues of signed graphs, Linear and Multilinear Algebra,(2003) p. 21-30.
  17. F. R. K. Chung, Counting balanced signed graphs using marked graphs, Proc. Edinburgh Math. Soc., 24 (2)(1981), 99-104.
DOI: https://doi.org/10.2478/jamsi-2021-0010 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 75 - 90
Published on: Dec 30, 2021
Published by: University of Ss. Cyril and Methodius in Trnava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2021 B. Prashanth, K. Nagendra Naik, R. Salestina M, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons Attribution 4.0 License.