Have a personal or library account? Click to login
Restructured class of estimators for population mean using an auxiliary variable under simple random sampling scheme Cover

Restructured class of estimators for population mean using an auxiliary variable under simple random sampling scheme

Open Access
|Dec 2021

References

  1. A. K. Kel’mans, Properties of the characteristic polynomial of a graph, Kibernetiky na Slŭ Kommunizmu, Emergija, Markova-Leningrand, 4(1967), 27-41(in Russian).
  2. B. Prashanth, K. Nagendra Naik, K. R. Rajanna, A remark on eigen values of Signed graph, Journal of Applied Mathematics, Statistics and Informatics15(1) (2019), 33-42. (ISSN (print): 1336-9180,(ISSN (on-line): 1339-0015, Poland)).
  3. C. S. Oliveria, N. M. Maia de Abreu, S. Jurkiewicz, The Characteristic Polynomial of the Laplacian of graphs in(a,b)-linear classes, Linear Algebra and its Applications. 356,113-121 (2002), (ISSN:0024-3795).
  4. D. Cvetkovic, P. Rowlinson, S. Simi’c: An Introduction to the Theory of Graph Spectra. Cambridge University Press, Cambridge(2010).
  5. F. Harary, R. Z. Norman and D. W. Cartwright, Structural models: An introduction to the theory of directed graphs, Wiley Inter-Science, Inc., New York, 1965.
  6. F. Harary, Graph Theory, Addison-Wesley Publishing Co., 1969.
  7. F. Harary, On the notion of balance of a signed graph, Michigan Math. J., 2(1953), 143-146.
  8. F. Harary and J. A. Kabell, Counting balanced signed graphs using marked graphs, Proc. Edinburgh Math. Soc., 24 (2)(1981), 99-104.
  9. F. Belardo and S. K. Simic, On the Laplacian coe cients of signed graphs, Linear ALgebra and its Applications,475 (2015), 94-113. (ISSN:0024-3795).
  10. G. T. Chartrand, Graphs as Mathematical Models, Prindle, Weber & Schmidt, Inc., Boston, Massachusetts 1977.
  11. G. Davis, G. Chen, F. Hall, Z. Li, M. Stewart and K. Patel, An interlacing result on normalized Laplacian, SIAM J. Discrete Math. 18(2004),353-361.
  12. I. M. Mladenov, M. D. Kotarov and J. G. Vassileva Popova, Method for Computing the Characteristic Polynomial, International Journal of Quantum Chemistry. 10(8),339-341 (1980), (ISSN:0020-7608-80).
  13. J. P. Grossman, An eigenvalue bound for the Laplacian of a graph, Discrete Math. 300 (2005), 225-228.
  14. M. J. Rosenberg and R. P. Abelson, Symbolic psycho-logic: A model of attitudinal cognition, Behav. Sci., volume 3, p. 1-13(1958).
  15. T. Zaslavsky, signed graphs, Discrete Appl. Math., 4(1)(1982), 47-74.
  16. Y. Hou, Y. Pan and J. Li On the Laplacian Eigenvalues of signed graphs, Linear and Multilinear Algebra,(2003) p. 21-30.
  17. F. R. K. Chung, Counting balanced signed graphs using marked graphs, Proc. Edinburgh Math. Soc., 24 (2)(1981), 99-104.
DOI: https://doi.org/10.2478/jamsi-2021-0010 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 75 - 90
Published on: Dec 30, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 B. Prashanth, K. Nagendra Naik, R. Salestina M, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons Attribution 4.0 License.