Have a personal or library account? Click to login

Vector valued nonuniform nonstationary wavelets and associated MRA on local fields

Open Access
|Dec 2021

References

  1. O. Ahmad, M.Y. Bhat, N. A. Sheikh, Construction of Parseval Framelets Associated with GMRA on Local Fields of Positive Characteristic, Numerical Functional Analysis and optimization (2021), https://doi.org/10.1080/01630563.2021.1878370.
  2. O. Ahmad, N. Ahmad, Construction of Nonuniform Wavelet Frames on Non-Archimedean Fields, Math. Phy. Anal. and Geometry, 23 (47) (2020).
  3. O. Ahmad, N. A Sheikh, K. S Nisar, F. A. Shah, Biorthogonal Wavelets on Spectrum, Math. Methods in Appl. Sci, (2021) 1–12. https://doi.org/10.1002/mma.7046.
  4. O. Ahmad, Nonuniform Periodic Wavelet Frames on Non-Archimedean Fields, Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica, 1-17, (2) (2020) doi: 10.17951/a.2020.74.2.1-17.
  5. O. Ahmad, N. A Sheikh, Explicit Construction of Tight Nonuniform Framelet Packets on Local Fields, Operators and Matrices 15 (1) (2021), 131–149.
  6. O. Ahmad, N.A. Sheikh, M. A. Ali, Nonuniform nonhomogeneous dual wavelet frames in Sobolev spaces in L2(K), Afr. Mat., (2020) doi.org/10.1007/s13370-020-00786-1.
  7. O. Ahmad and N. A. Sheikh, On Characterization of nonuniform tight wavelet frames on local fields, Anal. Theory Appl., 34 (2018) 135-146.
  8. O. Ahmad, F. A. Shah and N. A. Sheikh, Gabor frames on non-Archimedean fields, International Journal of Geometric Methods in Modern Physics, 15 (2018) 1850079 (17 pages).
  9. S. Albeverio, S. Evdokimov, and M. Skopina, p-adic nonorthogonal wavelet bases, Proc. Steklov Inst. Math., 265 (2009), 135-146.
  10. S. Albeverio, S. Evdokimov, and M. Skopina, p-adic multiresolution analysis and wavelet frames, J. Fourier Anal. Appl., 16 (2010), 693-714.
  11. S. Albeverio, A. Khrennikov, and V. Shelkovich, Theory of p-adic Distributions: Linear and Nonlinear Models, Cambridge University Press, 2010.
  12. S. Albeverio, R. Cianci, and A. Yu. Khrennikov, p-Adic valued quantization, p-Adic Numbers Ultrametric Anal. Appl. 1, 91–104 (2009).
  13. J. J. Benedetto and R. L. Benedetto, A wavelet theory for local fields and related groups, J. Geom. Anal. 14 (2004) 423-456.
  14. F. Bastin and L. Simons, About Nonstationary Multiresolution Analysis and Wavelets, Results. Math. 63 (2013), 485–500.
  15. M. Z. Berkolayko, I. Y. Novikov, On infinitely smooth compactly supported almost-wavelets, Math. Notes 56 (3-4) (1994) 877-883.
  16. C. de Boor, R. DeVore, A. Ron, On the construction of multivariate (pre)wavelets, Constr. Approx. 9 (1993) 123-166.
  17. I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Series in Applied Mathematics, SIAM, Philadelphia, 1992.
  18. S. Evdokimov and M. Skopina, 2-adic wavelet bases, Proc. Steklov Inst. Math., 266 (2009), S143-S154
  19. E. A. Lebedeva, On a connection between nonstationary and periodic wavelets, J. Math. Anal. Appl.
  20. Y. Farkov, Orthogonal wavelets on locally compact abelian groups, Funct. Anal. Appl., 31 (1997), 451 (1) (2017) 434-447.
  21. Y. Farkov, Multiresolution Analysis and Wavelets on Vilenkin Groups, Facta Universitatis (NIS), Ser.: Elec. Energ., 21 (2008), 309-325.
  22. J. P. Gabardo and M. Nashed, Nonuniform multiresolution analyses and spectral pairs, J. Funct. Anal. 158 (1998) 209-241.
  23. J. P. Gabardo and X. Yu, Wavelets associated with nonuniform multiresolution analyses and one-dimensional spectral pairs, J. Math. Anal. Appl., 323 (2006) 798-817.
  24. H. K. Jiang, D.F. Li and N. Jin, Multiresolution analysis on local fields, J. Math. Anal. Appl. 294 (2004) 523-532.
  25. A.Khrennikov andV.Shelkovich, Non-Haar p-adic wavelets and their application to pseudo-differential operators and equations, Appl. Comput. Harmon. Anal., 28 (2010) 1-23.
  26. A. Khrennikov, V. Shelkovich, and M. Skopina, p-adic refinable functions and MRA-based wavelets, J. Approx. Theory. 161 (2009), 226-238.
  27. A. Khrennikov, K. Oleschko, M.J.C. López, Application of p-adic wavelets to model reaction-diffusion dynamics in random porous media. J. Fourier Anal. Appl., 22 (2016) 809-822.
  28. A. Khrennikov, Modeling of Processes of Thinking in p-adic Coordinates [in Russian], Fizmatlit, Moscow (2004).
  29. S. Kozyrev and A. Khrennikov, p-adic integral operators in wavelet bases, Doklady Math., 83 (2011), 209–212.
  30. S. Kozyrev, A. Khrennikov, and V. Shelkovich, p-Adic wavelets and their applications, Proc. Steklov Inst. Math., 285 (2014), 157-196.
  31. W. C. Lang, Orthogonal wavelets on the Cantor dyadic group, SIAM J. Math. Anal., 27 (1996), 305–312.
  32. W. C. Lang, Wavelet analysis on the Cantor dyadic group, Houston J. Math., 24 (1998), 533-544.
  33. W. C. Lang, Fractal multiwavelets related to the cantor dyadic group, Int. J. Math. Math. Sci. 21 (1998), 307-314.
  34. D. F. Li and H. K. Jiang, The necessary condition and sufficient conditions for wavelet frame on local fields, J. Math. Anal. Appl. 345 (2008) 500-510.
  35. S. G. Mallat, Multiresolution approximations and wavelet orthonormal bases of L2(R), Trans. Amer. Math. Soc. 315 (1989) 69-87.
  36. S. G. Mallat, A Wavelet Tour of Signal Processing, Academic Press Inc., 1st Edition 1998, 2nd Edition 1999.
  37. F.A. Shah and O. Ahmad, Wave packet systems on local fields, Journal of Geometry and Physics, 120 (2017) 5-18.
  38. F. A. Shah, O. Ahmad and A. Rahimi, Frames Associated with Shift Invariant Spaces on Local Fields, Filomat 32 (9) (2018) 3097-3110.
  39. F. A. Shah and Abdullah, Nonuniform multiresolution analysis on local fields of positive characteristic, Complex Anal. Opert. Theory, 9 (2015) 1589-1608.
  40. M. H. Taibleson, Fourier Analysis on Local Fields, Princeton University Press, Princeton, NJ, 1975.
DOI: https://doi.org/10.2478/jamsi-2021-0007 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 19 - 46
Published on: Dec 30, 2021
Published by: University of Ss. Cyril and Methodius in Trnava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2021 O. Ahmad, A. H. Wani, N. A. Sheikh, M. Ahmad, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons Attribution 4.0 License.