[1] Garey M. R., Johnson D. S. (1990). Computers and Intractability – A Guide to the Theory of NP-Completeness. NY, USA: W. H. Freeman & Co., ISBN 0716710455.
[2] Riesel H. (2012). Prime Numbers and Computer Methods for Factorization. Springer: New York, 2nd ed., 482 p., ISBN 978-0-8176-8298-9, DOI 10.1007/978-0-8176-8298-9.
[5] Sittinger, B. D. (2010). The probability that random algebraic integers are relatively r-prime. In. Journal of Number Theory, Vol. 130, No. 1, pp. 164-171., DOI 10.1016/j.jnt.2009.06.008.
[6] Ďuriš V. (2020). Solving Some Special Task for Arithmetic Functions and Perfect Numbers. In. 19th Conference on Applied Mathematics: proceeding, Bratislava: STU, 4th -6th of February, 2020, pp. 374-383, ISBN 978-80-227-4983-1.
[17] Hadamard, J. (1896). Sur la distribution des zéros de la fonction ζ(s) et ses conséquences arithmétiques.In. Bulletin de la Société Mathématique de France, No. 24, pp. 199-220.
[18] De la Vallée Poussin C. J. (1896). Recherches analytiques de la théorie des nombres premiers. In. Annales de la Societe Scientifique de Bruxelles No. 20, pp. 183-256.
[20] Abramowitz M., Stegun I. (1965). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Revised ed., USA, Dover Publications, 1046 p., ISBN 978-0486612720.
[23] Skewes S. (1933). On the difference π(x) − li(x). In. Journal of the London Mathematical Society, Vol. s1-8, No. 4, pp. 277–283, DOI: 10.1112/jlms/s1-8.4.277.
[24] Skewes S. (1955). On the difference π(x) − li(x). In. Proceedings of the London Mathematical Society, Vol. s3-5, No. 1, pp. 48–70, DOI: 10.1112/plms/s3-5.1.48.
[25] Ďuriš V., Šumný T. (2019). Diophantine Geometry in Space E2 and E3. In. TEM Journal, ISSN 2217-8309, Vol. 8, No. 1, pp. 78-81, DOI 10.18421/TEM81-10.
[27] Bronštejn I. N., Semendjaev K. A. (1961). Handbook of mathematics for engineers and for students at technical universities. Bratislava: SVTL, Language: Slovak, transl. from 8th. Rus. ed.