Have a personal or library account? Click to login
A stochastic approach to number of corona virus cases Cover
By: H. Ünözkan,  M. Yilmaz and  A.M. Dere  
Open Access
|Dec 2020

References

  1. Eryılmaz S. 2017. A new class of bivariate lifetime distributions. Communications in Statistics-Theory and Methods. Vol. 46(24), 12324-12335.
  2. Marshall A.W., Olkin I. 1997. A new method of adding a parameter to a family of distributions with application to the exponential and Weibull families, Biometrika 84 641–652
  3. Li X., Zuo M.J. 2004. Preservation of stochastic orders for random minima and maxima with applications, Nav. Res. Logist., 51, 332-344.
  4. Ahmad I., Kayid M. 2007. Reversed preservation of stochastic orders for random minima and maxima with applications, Statistical Papers, 48, 283-293.
  5. Kundu D., Gupta R.D. 2014.On bivariate Weibull-geometric distribution, Journal of Multivariate Analysis, 123, 19-29.
  6. Miaomiao Y., Yinghui T., Wenqing W., Jie Z. 2014. Optimal order-replacement policy for a phase-type geometric process model with extreme shocks. Applied Mathematical Modelling. Vol: 38. 4323–4332
  7. Haijun L. 2003. Association of multivariate phase-type distributions, with applications to shock models. Statistics & Probability Letters Vol:64, 381–392.
  8. Mai J.F., Scherer M. and Shenkman N. 2013. Multivariate geometric distributions, (logarithmically) monotone sequences, and infinitely divisible laws. Journal of Multivariate Analysis 115 457–480.
  9. Arnold B.C. 1975. A characterization of the exponential distribution by multivariate geometric compounding, Sankhy¯a: The Indian Journal of Statistics 37 (1) 164–173.
  10. Marshall A.W., Olkin I. 1967. A multivariate exponential distribution, Journal of the American Statistical Association 62 (317) 30–44.
  11. Marshall A.W., Olkin I. 1995. Multivariate exponential and geometric distributions with limited memory, Journal of Multivariate Analysis 53 110–125.
  12. Nair N.U., Asha G. 1997. Some classes of multivariate life distributions in discrete time, Journal of Multivariate Analysis 62 181–189.
  13. Jayakumar K. and Mundassery D.A. 2007. On Bivariate Geometric Distribution. Statistica. Vol. 67 (4). 389–404.
  14. Krishna H. and Singh P. 2009. A Bivariate Geometric Distribution with Applications to Reliability.
  15. Klein, M. 1962. Inspection-maintenance-replacement schedules under Markovian deterioration. Management Science, V. 9, No. 1, pp. 25-32.
  16. Barlow R.E. and Proschan F. 1965. Mathematical theory of reliability. John Wiley& Sons, Inc., New York, NY, 1965.
DOI: https://doi.org/10.2478/jamsi-2020-0010 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 67 - 83
Published on: Dec 24, 2020
Published by: University of Ss. Cyril and Methodius in Trnava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 H. Ünözkan, M. Yilmaz, A.M. Dere, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons Attribution 4.0 License.