Have a personal or library account? Click to login
Fractional calculus pertaining to multivariable I-function defined by Prathima Cover

Fractional calculus pertaining to multivariable I-function defined by Prathima

By: D. Kumar and  F. Y. Ayant  
Open Access
|Dec 2019

References

  1. F. Y. Ayant, An integral associated with the Aleph-functions of several variables, Int. J. Math. Trends Tech. 31(3) (2016), 142–154.10.14445/22315373/IJMTT-V31P522
  2. D. Baleanu, D. Kumar and S. D. Purohit, Generalized fractional integrals of product of two H-functions and a general class of polynomials, Int. J. Comput. Math. 93(8) (2016), 1320–1329.10.1080/00207160.2015.1045886
  3. B.L.J. Braaksma, Asymptotic expansions and analytic continuations for a class of Barnes integrals, Compos. Math. 15 (1964), 239–341.
  4. V.B.L. Chaurasia and A. Srivastava, A unified approach to fractional calculus pertaining to H-functions, Soochow J. Math. 33(2) (2007), 211–221.
  5. J. Choi, J. Daiya, D. Kumar and R. K. Saxena, Fractional differentiation of the product of Appell function F3 and multivariable H-function, Commun. Korean Math. Soc., 31(1) (2016), 115–129.10.4134/CKMS.2016.31.1.115
  6. J. Daiya, J. Ram and D. Kumar, The multivariable H-function and the general class of Srivastava polynomials involving the generalized Mellin-Barnes contour integrals, FILOMAT 30(6) (2016), 1457–1464.10.2298/FIL1606457D
  7. A. Erdélyi, On some functional transformations, Univ. Politec. Torino, Rend. Sem. Mat. 10 (1950-51), 217-234.
  8. D. Kumar and F.Y. Ayant, Some double integrals involving multivariable I-function, Acta Universitatis Apulensis 58(2) (2019), 35–43.10.17114/j.aua.2019.58.03
  9. D. Kumar, F.Y. Ayant and J. Choi, Application of product of the multivariable A-function and the multivariable Srivastava polynomials, East Asian Math. J. 34(3) (2018), 295–303.
  10. D. Kumar and J. Daiya, Fractional calculus pertaining to generalized H-functions, Glob. J. Sci. Front. Res. (F) 14(3) (2014), 25–35.
  11. D. Kumar, R.K. Gupta, B.S. Shaktawat and J. Choi, Generalized fractional calculus formulas involving the product of Aleph-function and Srivastava polynomials, Proc. Jangjeon Math. Soc. 20(4) (2017), 701–717.
  12. D. Kumar, S. D. Purohit and J. Choi, Generalized fractional integrals involving product of multivariable H-function and a general class of polynomials, J. Nonlinear Sci. Appl. 9 (2016), 8–21.10.22436/jnsa.009.01.02
  13. E.R. Love, Some integral equations involving hypergeometric functions, Proc. Edinb. Math. Soc. 15 (3) (1967), 169–198.10.1017/S0013091500011706
  14. J. Prathima, V. Nambisan and S. K. Kurumujji, A study of I-function of several complex variables, Int. J. Engrg. Math. 2014 (2014), 1–12.10.1155/2014/931395
  15. J. Ram and D. Kumar, Generalized fractional integration involving Appell hypergeometric function of the product of two H-functions, Vijanana Parishad Anusandhan Patrika 54(3) (2011), 33–43.
  16. A.K. Rathie, A new generalization of generalized hypergeometric function, Le Matematiche 52(2) (1997), 297–310.
  17. M. Saigo, R.K. Saxena and J. Ram, On the fractional calculus operator associated with the H-function, Ganita Sandesh 6(1) (1992), 36–47.
  18. R.K. Saxena and V.S. Kiryakova, On relation between the two-dimensional H-transforms in terms of Erdélyi-Kober operators, Math. Balkanica 6 (1992), 133–140.
  19. R.K. Saxena and D. Kumar, Generalized fractional calculus of the Aleph-function involving a general class of polynomials, Acta Math. Sci. Ser. B Engl. Ed. 35(5) (2015), 1095–1110.10.1016/S0252-9602(15)30042-4
  20. R.K. Saxena and R.K. Kumbhat, Fractional integration operators of two variables, Proc. Indian Acad. Sci. Math. Sci. 78 (1973), 177–186.10.1007/BF03049477
  21. R.K. Saxena and R.K. Kumbhat, Some properties of generalized Kober operators, Vijnana Parishad Anusandhan Patrika 18 (1975), 139–150.
  22. R.K. Saxena, J. Ram and D.L. Suthar, Unified fractional derivative formulas for the multivariable H-function, Vijnana Parishad Anusandhan Patrika 49(2) (2006), 159–175.
  23. H.M. Srivastava, A multilinear generating function for the Konhauser set of biorthogonal polynomials suggested by Laguerre polynomial, Pacific J. Math. 177 (1985), 183–191.10.2140/pjm.1985.117.183
  24. H.M. Srivastava and R. Panda, Some bilateral generating functions for a class of generalized hypergeometric polynomials, J. Reine Angew. Math. 283/284 (1976), 265–274.10.1515/crll.1976.283-284.265
DOI: https://doi.org/10.2478/jamsi-2019-0009 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 61 - 73
Published on: Dec 21, 2019
Published by: University of Ss. Cyril and Methodius in Trnava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 D. Kumar, F. Y. Ayant, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.