Have a personal or library account? Click to login
Fractional Hermite-Hadamard type inequalities for co-ordinated prequasiinvex functions Cover

Fractional Hermite-Hadamard type inequalities for co-ordinated prequasiinvex functions

By: B. Meftah and  A. Souahi  
Open Access
|Jun 2019

References

  1. Ben-Israel, A. and Mond, B. 1986. What is invexity? J. Austral. Math. Soc. Ser. B 28, 1, 1–9.
  2. Dragomir, S. S. 2001. On the Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwanese J. Math. 5, 4, 775–788.
  3. Hanson, M. A. 1981. On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80, 2, 545–550.
  4. Kilbas, A. A., Srivastava, H. M., and Trujillo, J. J. 2006. Theory and applications of fractional differential equations. North-Holland Mathematics Studies, vol. 204. Elsevier Science B.V., Amsterdam.
  5. Latif, M. A. and Dragomir, S. S. 2013. Some Hermite-Hadamard type inequalities for functions whose partial derivatives in absolute value are preinvex on the co-ordinates. Facta Univ. Ser. Math. Inform. 28, 3, 257–270.
  6. Matł Oka, M. 2013. On some Hadamard-type inequalities for (h1, h2)-preinvex functions on the co-ordinates. J. Inequal. Appl., 2013:227, 12.
  7. Meftah, B. 2019. Fractional hermite-hadamard type integral inequalities for functions whose modulus of derivatives are co-ordinated log-preinvex. Punjab Univ. J. Math. (Lahore) 51, 2.
  8. Noor, M. A. 1994. Variational-like inequalities. Optimization 30, 4, 323–330.
  9. Noor, M. A. 2005. Invex equilibrium problems. J. Math. Anal. Appl. 302, 2, 463–475.
  10. Özdemir, M. E., Akdemir, A. O., and Yi Ldiz, C. 2012. On co-ordinated quasi-convex functions. Czechoslovak Math. J. 62(137), 4, 889–900.
  11. Özdemir, M. E., Yi Ldiz, C., and Akdemir, A. O. 2012. On some new Hadamard-type inequalities for co-ordinated quasi-convex functions. Hacet. J. Math. Stat. 41, 5, 697–707.
  12. Pečarić, J. E., Proschan, F., and Tong, Y. L. 1992. Convex functions, partial orderings, and statistical applications. Mathematics in Science and Engineering, vol. 187. Academic Press, Inc., Boston, MA.
  13. Pini, R. 1991. Invexity and generalized convexity. Optimization 22, 4, 513–525.
  14. Sari Kaya, M. Z. 2014. On the Hermite-Hadamard-type inequalities for co-ordinated convex function via fractional integrals. Integral Transforms Spec. Funct. 25, 2, 134–147.
  15. Weir, T. and Mond, B. 1988. Pre-invex functions in multiple objective optimization. J. Math. Anal. Appl. 136, 1, 29–38.
  16. Yang, X. M. and Li, D. 2001. On properties of preinvex functions. J. Math. Anal. Appl. 256, 1, 229–241.
DOI: https://doi.org/10.2478/jamsi-2019-0002 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 19 - 32
Published on: Jun 22, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 B. Meftah, A. Souahi, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons Attribution 4.0 License.