Have a personal or library account? Click to login
Study of Incomplete Elliptic Integrals Pertaining to pΨq Function Cover

Study of Incomplete Elliptic Integrals Pertaining to pΨq Function

Open Access
|Jan 2019

References

  1. Carlson, B. C. (1977). Special Functions of Applied Mathematics. Academic Press, New York, San Francisco and London.
  2. Srivastava, H.M., Parmar, R.K., and Chopra, P. (2017). Some families of generalized complete and incomplete elliptic-type integrals. Journal of Nonlinear Sciences and Applications. 10, 1162-1182.10.22436/jnsa.010.03.25
  3. Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G. (1954). Tables of Integral Transforms. Vol. II, McGraw-Hill Book Company, New York, Toronto and London.
  4. Gradshteyn, I. S. and Ryzhik, I. M. (1980). Table of Integrals, Series, and Products, Corrected and Enlarged Edition prepared by A. Jeffrey (and incorporating the Fourth Edition prepared by Yu. V. Geronimus and M. Yu. Tseytlin). Academic Press, New York, London, Toronto and Tokyo.
  5. Hài, N. T., Marichev, O. I. and Srivastava, H. M. (1992). A note on the convergence of certain families of multiple hypergeometric series. Journal of Mathematical Analysis and Applications.164, 104-115.10.1016/0022-247X(92)90147-6
  6. Chaurasiya, V. B. L. and Dubey, R. S. (2013). Definite Integrals of Generalized Certain Class of Incomplete Elliptic Integrals. Tamkang Journal of Mathematics. 44 (2), 197-208.10.5556/j.tkjm.44.2013.1410
  7. Srivastava, H.M. and Siddiqi, R. N. (1995). A Unified Presentation of Certain Families of Elliptic-Type Integrals Related to Radiation Field Problems. Radiation Physics and Chemistry. 46 (3), 303-315.10.1016/0969-806X(94)00174-I
  8. Pinter, A. and Srivastava, H. M. (1998). Some Remakes on Generalized Elliptic-Type Integrals. Integral Transforms Special Function. 7(1-2), 167-170.10.1080/10652469808819195
  9. Kaplan, E. L. (1950). Multiple elliptic integrals. Journal of Mathematical Physics. 29, 69-75.10.1002/sapm195029169
  10. Müller, K. F. (1926). Berechnung der Induktivität Spulen, Arch. Elektrotech.17, 336-353.10.1007/BF01655986
  11. Prudnikov, A. P., Bryčkov, Yu. A. and Maričev, O. I. (1988). Integrals and Series, Vol. 2. Special Functions, ”Nauka”, Moscow, 1986 (in Russian), Translated from the Russian by N. M. Queen, Second edition, Gordon and Breach Science Publishers, New York, Philadelphia, London, Paris, Montreux, Tokyo and Melbourne.
  12. Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G. (1953). Higher Transcendental Functions. Vols. I and II, McGraw-Hill Book Company, New York, Toronto and London.
  13. Srivastava, H. M. and Bromberg, S. (1995). Some families of generalized elliptic-type integrals. Mathematical and Computer Modelling. 21 (3), 29-38.10.1016/0895-7177(94)00212-7
  14. Srivastava, H. M. (1995). Some elliptic integrals of Barton and Bushell. Journal of Physics A: Mathematical and General. 28, 2305-2312.10.1088/0305-4470/28/8/021
  15. Srivastava, H. M. and Daoust, M. C. (1969). Certain generalized Neumann expansions associated with the Kampé de Fériet function, Nederl. Akad. Wetensch. Proc. Ser. A, v. 72 = Indag. Math., v. 31, 449-457.
  16. Srivastava, H. M. and Daoust, M. C. (1972). A note on the convergence of Kampé de Fériet’s double hypergeometric series. Mathematische Nachrichten. 53, 151-157.10.1002/mana.19720530114
  17. Lin, S. D., Chang., Li-Fen and Srivastava, H. M. (2009). A certain class of incomplete elliptic integrals and associated definite integrals. Applied Mathematics and Computation. doi:10.1016/j.amc.2009.06.059.
  18. Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J. (2004). Theory and Applications of Fractional Differential Equations. North-Holland Mathematical Studies. Vol. 204, Elsevier (North-Holland) Science Publishers, Amsterdam, London and New York.
  19. Miller, K. S. and Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations. A Wiley-Interscience Publication, John Wiley and Sons, New York, Chichester, Brisbane, Toronto and Singapore.
  20. Podlubny, I. (1999). Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering. Vol. 198, Academic Press, New York, London, Tokyo and Toronto.
  21. Wright, E. M. (1935). The asymptotic expansion of generalized hypergeometric function. Journal of the London Mathematical Society. 10, 286-293.10.1112/jlms/s1-10.40.286
DOI: https://doi.org/10.2478/jamsi-2018-0009 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 11 - 18
Published on: Jan 11, 2019
Published by: University of Ss. Cyril and Methodius in Trnava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Ravi Shanker Dubey, Anil Sharma, Monika Jain, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.