Have a personal or library account? Click to login
An Alternative Proof For the Minimum Fisher Information of Gaussian Distribution Cover

An Alternative Proof For the Minimum Fisher Information of Gaussian Distribution

By: Abbas Pak  
Open Access
|Jan 2019

References

  1. Balasco, M., Lapenna, V., Lovallo, M., Romano, G., Siniscalchi, A. and Telesca, L. (2008). Fisher information measure analysis of earth’s apparent resistivity. International Journal of Nonlinear Science 5(3) 230-236.
  2. Dulek, B. and Gezici, S. (2014). Average Fisher information maximisation in presence of cost-constrained measurements. Electronics Letters 47(11) 654-656.10.1049/el.2011.0686
  3. Frank, S.A. (2009). Natural selection maximizes Fisher information. Journal of Evolutionary Biology 22(2) 231-244.10.1111/j.1420-9101.2008.01647.x19032501
  4. Frieden, B.R. (2009). Fisher information, disorder, and the equilibrium distributions of physics. Physical Review A-41(8) 4265-4276.10.1103/PhysRevA.41.4265
  5. Hussin, A.G., Abuzaid, A., Zulkifili, F. and Mohamed I. (2010). Asymptotic covariance and detection of influential observations in a linear functional relationship model for circular data with application to the measurements of wind directions. Science Asia, 36, 249-253.10.2306/scienceasia1513-1874.2010.36.249
  6. Khoolenjani, N.B. and Alamatsaz, M.H. (2016). A De Bruijn’s identity for dependent random variables based on copula theory. Probability in the Engineering and Informational Sciences, 30(1), 125-140.10.1017/S0269964815000315
  7. Lehmann, E.L. and Casella, G. (1998). Theory of Point Estimation, 2nd ed, New York: Springer.
  8. Mamun, S.M.A., Hussin, G.A., Zubairi, Y.Z. and Imon, R.A.H.M. (2013). Maximum likelihood estimation of linear structural relationship model parameters assuming the slope is known. Science Asia, 39, 561-565.10.2306/scienceasia1513-1874.2013.39.561
  9. Martin, M.T., Pennini, F. and Plastino, A. (2009). Fisher’s information and the analysis of complex signals. Physics Letters A-256(2-3) 173-180.10.1016/S0375-9601(99)00211-X
  10. Nagy, A. (2003). Fisher information in density functional theory. The Journal of Chemical Physics 119(18) 9401-9405.10.1063/1.1615765
  11. Neri, A., Carli, M. and Battisti, F. (2013). Maximum likelihood estimation of depth field for trinocular images. Electronics Letters 49(6) 394-396.10.1049/el.2012.2978
  12. Park, S., Serpedin, E. and Qaraqe, K. (2013). Gaussian assumption: The least favorable but the most useful. IEEE Signal Processing Magazine 30 183-186.10.1109/MSP.2013.2238691
  13. Shao, J. (1999). Mathematical statistics, New York: Springer-Verlag.
  14. Stoica, P. and Babu, P. (2011). The Gaussian data assumption leads to the largest Cramer-Rao bound. IEEE Signal Processing Magazine 28 132-133.10.1109/MSP.2011.940411
  15. Vignat, C. and Bercher, J.F. (2003). On Fisher information inequalities and score functions in non-invertible linear systems. Journal of Inequalities in Pure and Applied Mathematics 4(4) 71.
  16. Xu, B., Chen, Q., Wu, Z. and Wang, Z. (2008). Analysis and approximation of performance bound for two-observer bearings-only tracking. Information Sciences 178(8) 2059-2078.10.1016/j.ins.2007.12.004
  17. Zivojnovic, V. and Noll, D. (1997). Minimum Fisher information spectral analysis. ICASSP-97, IEEE International Conference on Acoustics, Speech, and Signal Processing 5.10.1109/ICASSP.1997.604786
DOI: https://doi.org/10.2478/jamsi-2018-0008 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 5 - 10
Published on: Jan 11, 2019
Published by: University of Ss. Cyril and Methodius in Trnava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Keywords:

© 2019 Abbas Pak, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.