References
- [1] Yablonskiy S. V., Introduction into discrete mathematics, Moscow, Nauka, 1979 (in Russian).
- [2] Yablonskiy S. V. and Lupanov O. B., Discrete mathematics and Mathematical Problems of Cybernetics, Nauka, Moscow, 1974, (in Russian)
- [3] Sapozhenko A. A., Disjunctive Normal Forms, Moscow University Press, Moscow, 1975 (in Russian).
- [4] Sapozhenko A. A., Geometric structure of almost all Boolean, Problemy kibernetiky, Vol. 30, 1975, 227-261, (in Russian)
- [5] Zhuravlev J. I., Set theoretical methods in the algebra of logic, Problemy kibernetiki, Vol. 8, 1962, 5-44, (in Russian).
- [6] Toman E., On the size of a neighbourhood of the first rank, Computers and Artificial Intelligence, Vol.12, No. 2, 1993, 123-130
- [7] Daubner J. and Toman E., Vertex degree in the interval graph of a random Boolean function, Acta Mathematica Universitatis Comenianae, Vol. 79, No. 2, 2010, 151-164
- [8] Toman E., Olejar D. and Stanek M., Average degree in the interval graph of a random Boolean function, Computing and Informatics, Vol. 27, 2008, 627-638
- [9] Daubner J. and Toman E., Neighbourhood of the constant order in the interval graph of a random Boolean functionFundamenta Informaticae, 2012, Vol. 122, 1-2110.3233/FI-2013-790
- [10] Toman E. and Tomanova J., Some estimates of the complexity of disjunctive normal forms of a random Boolean function, Computers and Artificial Intelligence, Vol. 10, No. 4, 1991, 327-340
- [11] Graham, Knuth, Patashnik, Concrete Mathematics a Foundation for Computer Science, Addison-Wesley Publishing Company, 198910.1063/1.4822863
- [12] Dedekind R., Über Zerlegungen von Zahlen durch ihre größten gemeinsamen Teiler, Gesammelte Werke, 1897, Vol. 2, 103-14810.1007/978-3-663-07224-9_1
- [13] Church R., Numerical analysis of certain free distributive structures, Duke Mathematical Journal, 1940, Vol. 6, 732-73410.1215/S0012-7094-40-00655-X
- [14] Ward M., Note on the order of free distributive lattices, Bulletin of the American Mathematical Society, 1946, Vol. 52, 42310.1090/S0002-9904-1946-08568-7
- [15] Gilbert E. N., Lattice theoretic properties of frontal switching functions, J. Math. Physics, 1954, Vol. 33, 57-6710.1002/sapm195433157
- [16] Yamamoto K., Note on the order of free distributive lattices, Science Reports of the Kanazawa University, 1953, Vol. 2, No. 1, 5-6
- [17] [17] Hansel G., Sur le nombre des fonctions booléennes monotones de variables, C. R. Acad. Sci. Paris, 1966, Vol. 262, No. 20, 1088-1090 (French)
- [18] Markowsky G., Combinatorial aspects of lattice theory with applications to the enumeration of free distributive lattices, Ph.D. Thesis, Harvard University, 1973
- [19] Kleitman D., Markowsky G., On Dedekind’s problem: the number of isotone Boolean functions. II, Transactions of the American Mathematical Society, 1975, Vol. 21, 373-39010.1090/S0002-9947-1975-0382107-0
- [20] Yamamoto K., Logarithmic order of free distributive lattice, Journal of the Mathematical Society of Japan, 1954, Vol. 6, 343-35310.2969/jmsj/00630343
- [21] Korshunov, A. D., The number of monotone Boolean functions, Problemy Kibernetiki, 1981, Vol. 38, 5-108
- [22] Kleitman D., On Dedekind’s problem: the number of monotone Boolean functions, Proc. Amer. Math. Soc., 1969, Vol. 21, 677-68210.2307/2036446
- [23] Post E., Introduction to a general theory of elementary propositions, American Journal of Mathematics, 1921, Vol. 4, 163-18510.2307/2370324
- [24] Altun M. and Riedel M. D., A Study on Monotone Self-dual Boolean Functions, SIAM Journal on Discrete Mathematics, 2012, 10 pages
- [25] E.Sperner, Ein Satz ̈ber Untermengen einer endlichen Menge, Math.Z., 27(1928), pp. 544-548
- [26] G. Gr ̈tzer, Lattice Theory: Foundation, Springer Basel AG, 201110.1007/978-3-0348-0018-1
- [27] Movsisyan Yu. M., Aslanyan V.A., A functional completeness theorem for De Morgan functions, Discrete Appl. Math., 2014, 162, 1-16 10.1016/j.dam.2013.08.006