Have a personal or library account? Click to login
Correlation of Neutrosophic Sets in Probability Spaces Cover
Open Access
|Jul 2014

References

  1. [1] A. A. Salama and S. A. Alblowi, (2012), “Generalized neutrosophic set and generalized neutrosophic topological spaces”, Computer Science and Engineering, 2 (7).10.5923/j.computer.20120207.01
  2. [2] A. A. Salama and S. A. Alblowi, (2012), “Neutrosophic set and neutrosophic topological spaces, “IOSR Journal of Mathematics (IOSR-JM), 3(4) 31-35.10.9790/5728-0343135
  3. [3] A. A. Salama, Mohamed Eisa and M. M. Abdelmoghny, (2014), Neutrosophic Relations Database, International Journal of Information Sciences and intelligent Systems, Vol. (4) No.2. pp33-46.
  4. [4] A. A. Salama and F. Smarandache, (2013) Filters via Neutrosophic Crisp Sets, Neutrosophic Sets and Systems, Vol.1, No. 1, (2013) pp. 34-38.
  5. [5] A. A. Salama and H. Elagamy, (2013), Neutrosophic Filters, International Journal of Computer Science Engineering and Information Technology Reseearch (IJCSEITR), Vol.3, Issue(1), Mar 2013, pp 307-312.
  6. [6] A. A. Salama, F. Smarandache and Valeri Kroumov, (2014), Neutrosophic crisp Sets & Neutrosophic Crisp Topological Spaces, Neutrosophic Sets and Systems, Vol. (2), pp 25-30.
  7. [7] A. A. Salama, Said Broumi and Florentin Smarandache, (2014), Neutrosophic Crisp Open Set and Neutrosophic Crisp Continuity via Neutrosophic Crisp Ideals, I.J. Information Engineering and Electronic Business, Published Online October 2014 in MECS.10.5815/ijieeb.2014.03.01
  8. [8] A. Robinson, (1960), “Non-Standard analysis”, Princeton University Press, Princeton, New Jersey.
  9. [9] C. Yu, (1993), “Correlation of fuzzy numbers”. Fuzzy Sets and Systems, 55:303-307.10.1016/0165-0114(93)90256-H
  10. [10] D. H. Hong, S.Y. Hwang, (1995), “Correlation of Intuitionistic fuzzy sets in probability spaces”, Fuzzy Sets and Systems, 75:77-81.10.1016/0165-0114(94)00330-A
  11. [11] F. Smarandach, (2002), “A new branch of philosophy, in multiple valued logic”, An International Journal, 8(3): 297- 384.
  12. [12] F. Smarandach, (2003), “Neutrosophic set a generalization of the intuitionistic fuzzy sets”, Proceedings of the third conference of the European Society for fuzzy logic and Technolgye, EUSFLAT, Septamper Zittau Geamany; Univ. of Applied Sciences at Zittau Goerlit 2, 141-146.
  13. [13] F. Smarandach, (2013), INTRODUCTION TONEUTROSOPHIC MEASURE, NEUTROSOPHIC INTEGRAL, AND NEUTROSOPHIC PROBABILITY http://fs.gallup.unm.edu/eBooks-otherformats.htm EAN: 9781599732534
  14. [14] F. Smarandache, (1999), A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability. American Research Press, Rehoboth, NM,
  15. [15] F. Smarandache, (2005), Neutrosophic set, a generalization of the intuitionistics fuzzy sets, Inter. J. Pure Appl. Math., 24 287 - 297.
  16. [16] I. M. Hanafy, A. A. Salama and K. M. Mahfouz, (2012), “Correlation of neutrosophic data” International Refereed Journal of Engineering and Science, 1(2): 39-43.
  17. [17] I. M. Hanafy, A.A. Salama and K. M. Mahfouz, (2013),” Neutrosophic Classical Events and Its Probability” International Journal of Mathematics and Computer Applications Research(IJMCAR), Vol. (3), Issue 1, pp171-178.
  18. [18] I. M. Hanafy, A. A. Salama and K. Mahfouz, (2013), “Correlation Coefficient of Neutrosophic Sets by Centroid Method” Internationals Journal of International Journal of Probability and Statistics 2(1), pp 912.
  19. [19] K. T. Atanassov, (1983), “Intuitionistic fuzzy sets”. Central Tech. Library, Bulgarian Academy Science, Sofia, Bulgaria, Rep. No. 1697/84. [20] K. T. Atanassov, (1983), “Intuitionistic fuzzy sets”. Proc. of Polish Symp. On Interval and Fuzzy mathematics, Poznan 23-26.
  20. [21] K. T. Atanassov, (1986), “Intuitionistic fuzzy sets”. Fuzzy Sets and Systems, 20:87-96.10.1016/S0165-0114(86)80034-3
  21. [22] M. Masjed-Jamei, S. S. Dragomir, H.M. Srivastava, (2008), “Some generalizations of the Cauchy-Schwarz and the Cauchy-Bunyakovsky inequalities involving four free parameters and their applications”, RGMIA Res. Rep. Coll., 11 (3), Article 3, pp.1-12 (electronic).
  22. [23] S. S. Dragomir, (2004), “Discrete inequalities of the Cauchy-Bunyakovsky-Schwarz type”, Nova Science Publishers, Inc., Hauppauge, NY.
  23. [24] T. Gerstenkorn, J. Manko, (1991), “Correlation of intuitionistic fuzz sets “, Fuzzy Sets and Systems, 44: 39-43. [25] W. L. Hung and J. W. Wu, (2002), “Correlation of intuitionistic fuzzy sets by centroid method”. Information Sciences 144: 219-225.
  24. [26] L. A. Zadeh, (1965), “Fuzzy sets”. Information and Control, 8: 338-353.10.1016/S0019-9958(65)90241-X
DOI: https://doi.org/10.2478/jamsi-2014-0004 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 45 - 52
Published on: Jul 15, 2014
Published by: University of Ss. Cyril and Methodius in Trnava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2014 I.M. Hanafy, A. A. Salama, O. M. Khaled, K. M. Mahfouz, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.