Have a personal or library account? Click to login
On New Inequalities of Simpson’s Type for Functions Whose Second Derivatives Absolute Values are Convex Cover

On New Inequalities of Simpson’s Type for Functions Whose Second Derivatives Absolute Values are Convex

Open Access
|Aug 2013

References

  1. M. Alomari, M. Darus and S.S. Dragomir, New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are quasi-convex, RGMIA Res. Rep. Coll., 12 (2009), Supplement, Article 17. [Online: http://www.staff.vu.edu.au/RGMIA/v12(E).asp]
  2. M. Alomari, M. Darus and S.S. Dragomir, New inequalities of Simpson’s type for sconvex functions with applications, RGMIA Res. Rep. Coll., 12 (4) (2009), Article 9. [Online: http://www.staff.vu.edu.au/RGMIA/v12n4.asp]
  3. S.S. Dragomir, R.P. Agarwal and P. Cerone, On Simpson’s inequality and applications, J. ofInequal. Appl., 5(2000), 533-579.
  4. S. Hussain, M.I. Bhatti and M. Iqbal, Hadamard-type inequalities for s-convex functions I, Punjab Univ. Jour. of Math., Vol.41, pp:51-60, (2009).
  5. B.Z. Liu, An inequality of Simpson type, Proc. R. Soc. A, 461 (2005), 2155-2158.10.1098/rspa.2005.1505
  6. J. Pečarić, F. Proschan and Y.L. Tong, Convex functions, partial ordering and statistical applications, Academic Press, New York, 1991.
DOI: https://doi.org/10.2478/jamsi-2013-0004 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 37 - 45
Published on: Aug 24, 2013
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2013 Mehmet Zeki Sarikaya, Erhan. Set, M. Emin Ozdemir, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons License.

Volume 9 (2013): Issue 1 (May 2013)