Have a personal or library account? Click to login
Characterizations of Distributions of Ratios of Certain Independent Random Variables Cover

Characterizations of Distributions of Ratios of Certain Independent Random Variables

By: G.G. Hamedani  
Open Access
|Aug 2013

References

  1. Ahsanullah, M. and Hamedani, G.G., Certain characterizations of the power function and beta distributions based on order statistics, JSTA, 6 (2007) , 220225.
  2. Galambos, J. and Kotz, S., Characterizations of probability distributions. A unified approach with an emphasis on exponential and related models, Lecture Notes in Mathematics, 675, Springer, Berlin, 1978.
  3. Glanzel, W., A characterization of the normal distribution, Studia Sci. Math.
  4. Hungar. 23 (1988) , 89 91.10.14315/prth-1988-0203
  5. Glanzel, W., A characterization theorem based on truncated moments and its application to some distribution families, Mathematical Statistics and Probability Theory (Bad Tatzmannsdorf, 1986), Vol. B, Reidel, Dordrecht, 1987, 75 84.10.1007/978-94-009-3965-3_8
  6. Glanzel, W., Some consequences of a characterization theorem based on truncated moments, Statistics 21 (1990) , 613 618.10.1080/02331889008802273
  7. Glanzel, W. and Hamedani, G.G., Characterizations of univariate continuous distributions, Studia Sci. Math. Hungar. 37 (2001) , 83 118.10.1556/sscmath.37.2001.1-2.5
  8. Glanzel, W., IrWin - A characterization tool for discrete distributions under Window(R), Proc. COMPSTAT ’ 94 (Vienna, 1994), Short Communications in Computational Statistics, ed. by R. Dutter and W. Grossman, Vienna, 199 200.
  9. Glanzel, W., Telcs, A. and Schubert, A., Characterization by truncated moments and its application to Pearson-type distributions, Z. Wahrsch. Verw. Gebiete 66 (1984) , 173 183.10.1007/BF00531527
  10. Hamedani, G.G., Characterizations of Cauchy, normal and uniform distributions, Studia Sci. Math. Hungar. 28 (1993) , 243 247.
  11. Hamedani, G.G., Characterizations of univariate continuous distributions. II, Studia Sci. Math. Hungar. 39 (2002) , 407 424.10.1556/sscmath.39.2002.3-4.11
  12. Hamedani, G.G., Characterizations of univariate continuous distributions. III, Studia Sci. Math. Hungar. 43 (2006) , 361 385.10.1556/sscmath.43.2006.3.4
  13. Hamedani, G.G., Characterizations of univariate continuous distributions based on hazard function, J. of Applied Statistical Science, 13 (2004) , 169 183.
  14. Hamedani, G.G., Characterizations of continuous univariate distributions based on the truncated moments of functions of order statistics, Studia Sci. Math. Hungar. 47 (2010) , 462 484.10.1556/sscmath.2009.1143
  15. Hamedani, G.G. and Ahsanullah, M., Characterizations of univariate continuous distributions based on hazard function II, J. of Statistical Theory and Applications, 4 (2005) , 218 238.
  16. Hamedani, G.G., Ahsanullah, M. and Sheng, R., Characterizations of certain continuous univariate distributions based on truncated moment of the first order statistic, Aligrah J. of Statistics, 28 (2008) , 75 81.
  17. Kotz, S. and Shanbhag, D.N., Some new approaches to probability distributions, Adv. in Appl. Probab. 12 (1980) , 903 921.10.1017/S0001867800020164
  18. Nadarajah, S., Distribution properties and estimation of the ratio of independent Weibull random variables, Adv. Stat. Anal. 94 (2010) , 231 246.10.1007/s10182-010-0134-1
  19. Nadarajah, S. and Kotz, S., On the product and ratio of gamma and Weibull random variables, Econometric Theory, 22 (2006) , 338 344.10.1017/S0266466606060154
  20. Shakil, M. and Ahsanullah, M., Record values of the ratio of Rayleigh random variables, Pak. J. Statist. 27 (2011) , 307 325.
DOI: https://doi.org/10.2478/jamsi-2013-0002 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 15 - 25
Published on: Aug 24, 2013
Published by: University of Ss. Cyril and Methodius in Trnava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2013 G.G. Hamedani, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons License.

Volume 9 (2013): Issue 1 (May 2013)