References
- R. Ramirez, E. Maestre, X. Serra, A rule-based evolutionary approach to music performance modeling, IEEE Transactions on Evolutionary Computation, 16 (2011) 96-107.
- B. Bozhanov, Computoser-rule-based, probability-driven algorithmic music composition, arXiv preprint arXiv:1412.3079, 2014.
- K. Hastuti, A. Azhari, A. Musdholifah, R. Supanggah, Rule-based and genetic algorithm for automatic gamelan music composition, International Review on Modelling and Simulations, 10 (2017) 202-212.
- Y. Chen, Y. Sun, The Usage of Artificial Intelligence Technology in Music Education System under Deep Learning, IEEE Access, 2024.
- Y. Chen, Innovation of Music Teaching Methods in Universities Based on Fuzzy Decision Support Systems and Deep Learning, International Journal of Fuzzy Systems, 2025.
- P. Suthaphan, V. Boonrod, N. Kumyaito, K. Tamee, Music generator for elderly using deep learning, In: Joint International conference on digital arts, media and technology with ECTI northern section conference on electrical, electronics, computer and telecommunication engineering, 2021, 289-292.
- J.-P. Briot, G. Hadjeres, F.-D. Pachet, Deep learning techniques for music generation, Springer, 2020.
- A. Huang, R. Wu, Deep learning for music, arXiv preprint arXiv:1606.04930, 2016.
- W. Bian, Y. Song, N. Gu, T.Y. Chan, T.T. Lo, T.S. Li, K.C. Wong, W. Xue, R.A. Trillo, MoMusic: A motion-driven human-AI collaborative music composition and performing system, In: AAAI Conference on Artificial Intelligence (AAAI), 37 (2023) 16057-16062.
- Z. Xu, D. Dutta, Y.-L. Wei, R.R. Choudhury, Multi-Source Music Generation with Latent Diffusion, arXiv preprint, 2025.
- W.-H. Kai, K.-X. Xing, Video-driven musical composition using large language model with memory-augmented state space, The Visual Computer, 2024, 1-13.
- P. Pasquier, J. Ens, N. Fradet, P. Triana, D. Rizzotti, J.-B. Rolland, M. Safi, MIDI-GPT: A Controllable Generative Model for Computer-Assisted Multitrack Music Composition, arXiv preprint arXiv:2501.17011, 2025.
- M. Grachten, S. Lattner, E. Deruty, Bassnet: A variational gated autoencoder for conditional generation of bass guitar tracks with learned interactive control, Applied Sciences, 10 (2020) 6627.
- S. Oore, I. Simon, S. Dieleman, D. Eck, K. Simonyan, This time with feeling: Learning expressive musical performance, Neural Computing and Applications, 32 (2020) 955-967.
- D. Kim, H.-W. Dong, D. Jeong, ViolinDiff: Enhancing Expressive Violin Synthesis with Pitch Bend Conditioning, arXiv preprint arXiv:2409.12477, 2024.
- Y.-J. Lin, H.-K. Kao, Y.-C. Tseng, M. Tsai, L. Su, A human-computer duet system for music performance, In: ACM International Conference on Multimedia, 2020, 772-780.
- D. Stefani, M. Tomasetti, F. Angeloni, L. Turchet, et al., Esteso: Interactive AI Music Duet Based on Player-Idiosyncratic Extended Double Bass Techniques, In: Proceedings of the International Conference on New Interfaces for Musical Expression (NIME’24), 2024.
- M. Sanganeria, R. Gala, Tuning Music Education: AI-Powered Personalization in Learning Music, arXiv preprint arXiv:2412.13514, 2024.
- Z. Ying, Experience of intelligent speech robot in music online classroom based on deep learning and virtual reality, Entertainment Computing, 52 (2025) 100795.
- J. Wu, X. Liu, X. Hu, J. Zhu, PopMNet: Generating structured pop music melodies using neural networks, Artificial Intelligence, 286 (2020) 103303.
- J. Grekow, T. Dimitrova, Monophonic music generation with a given emotion using conditional variational autoencoder, IEEE Access, 9 (2021) 129088-129101.
- W. Wang, J. Li, Y. Li, X. Xing, Style-conditioned Music Generation with Transformer-GANs, Frontiers of Information Technology & Electronic Engineering, 2024.
- K. Choi, J. Park, W. Heo, S. Jeon, J. Park, Chord conditioned melody generation with transformer-based decoders, IEEE Access, 9 (2021) 42071-42080.
- S. Lattner, M. Grachten, G. Widmer, Imposing higher-level structure in polyphonic music generation using convolutional restricted boltzmann machines and constraints, Journal of Creative Music Systems, 2 (2018) 1-31.
- X. Zhou, P. Yu, Social robots based on sensor technology simulate user music interaction experience, Entertainment Computing, 51 (2024) 100751.
- D. Wang, X. Guo, Research on evaluation model of music education informatization system based on machine learning, Scientific Programming, 2022.
- C. Hernandez-Olivan, J.R. Beltran, Music composition with deep learning: A review, In: Advances in Speech and Music Technology: Computational Aspects and Applications, 2022.
- C.-H. Liu, C.-K. Ting, Computational intelligence in music composition: A survey, IEEE Transactions on Emerging Topics in Computational Intelligence, 1 (2016) 2-15.
- M. Evin, A review on AI-enabled techniques for evaluating musician’s performance, In: AIP Conference Proceedings, 3149 (2024).
- S. Holland, Artificial intelligence in music education: A critical review, In: Readings in Music and Artificial Intelligence, 2013, 239-274.
- J.F. Merchán Sánchez-Jara, S. González Gutiérrez, J. Cruz Rodríguez, B. Syroyid Syroyid, Artificial Intelligence-Assisted Music Education: A Critical Synthesis of Challenges and Opportunities, Education Sciences, 14 (2024) 1171.
- K. O’shea, R. Nash, An introduction to convolutional neural networks, arXiv preprint arXiv:1511.08458, 2015.
- Y. Han, Exploring a digital music teaching model integrated with recurrent neural networks under artificial intelligence, Scientific Reports, 2025.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I. Polosukhin, Attention is All you Need, Advances in Neural Information Processing Systems, 2017.
- P.L. Diéguez, V.-W. Soo, Variational autoencoders for polyphonic music interpolation, In: International Conference on Technologies and Applications of Artificial Intelligence (TAAI), 2020, 56-61.
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial networks, Communications of the ACM, 63 (2020) 139-144.
- J. Zhang, G. Fazekas, C. Saitis, Composer Style-specific Symbolic Music Generation Using Vector Quantized Discrete Diffusion Models, arXiv preprint, 2024.
- P. Xiao, Enhancing emotional expression in algorithmic music composition systems using reinforcement learning, Journal of Computational Methods in Sciences and Engineering, 2025.
- L. Liu, R. Gong, Y. Yang, MusDiff: A multimodal-guided framework for music generation, Alexandria Engineering Journal, 129 (2025) 128-136.
- A. Agostinelli, T.I. Denk, Z. Borsos, J. Engel, M. Verzetti, A. Caillon, Q. Huang, A. Jansen, A. Roberts, M. Tagliasacchi, et al., Musiclm: Generating music from text, arXiv preprint arXiv:2301.11325, 2023.
- P. Dhariwal, H. Jun, C. Payne, J.W. Kim, A. Rad-ford, I. Sutskever, Jukebox: A Generative Model for Music, arXiv preprint arXiv:2005.00341, 2020.
- C. Payne, MuseNet, OpenAI Blog, 3 (2019).
- Google AI, Magenta: Make Music and Art Using Machine Learning, https://magenta.withgoogle.com/, 2025.
- Aiva Technologies SARL, Personal AI music generation assistant, https://www.aiva.ai, 2025.
- S. Forsgren, H. Martiros, Riffusion - Stable diffusion for real-time music generation, https://riffusion.com/about, 2022.
- M. Aria, C. Cuccurullo, Bibliometrix: An R-tool for comprehensive science mapping analysis, Journal of Informetrics, 11 (2017) 959-975.
- C. Jin, T. Wang, X. Li, C.J.J. Tie, Y. Tie, S. Liu, M. Yan, Y. Li, J. Wang, S. Huang, A Transformer Generative Adversarial Network for Multi-track Music Generation, CAAI Transactions on Intelligence Technology, 2022.
- C. Gao, F. Reuben, T. Collins, Variation Transformer: New datasets, models, and comparative evaluation for symbolic music variation generation, In: Proceedings of the conference, 2024.
- J. Zhang, G. Fazekas, C. Saitis, Fast Diffusion GAN Model for Symbolic Music Generation Controlled by Emotions, arXiv preprint, 2023.
- C. Palmer, Music performance, Annual Review of Psychology, 1997.
- D.J. Hargreaves, N.A. Marshall, A.C. North, Music education in the twenty-first century: A psychological perspective, British Journal of Music Education, 2003.
- N. Van Eck, L. Waltman, Software survey: VOSviewer, a computer program for bibliometric mapping, Scientometrics, 2009.
- A. Ycart, E. Benetos, Learning and evaluation methodologies for polyphonic music sequence prediction with LSTMs, IEEE/ACM Transactions on Audio, Speech, and Language Processing, 28 (2020) 1328-1341.
- Y. Yan, Z. Duan, Measure by Measure: Measure-Based Automatic Music Composition with Modern Staff Notation, Transactions of the International Society for Music Information Retrieval (ISMIR), 2024.
- M. Tomasetti, L. Turchet, Handheld controller-based locomotion in Virtual Reality as an approach to interactive music composition: insights from composers’ preferences, Digital Creativity, 2024.
- S. Zhang, X. Lu, X. Liu, Study on the Influence of AI Composition Software on Students‘ Creative Ability in Music Education, Journal of Educational Technology and Innovation (JETI), 2024.
- H. Pu, F. Jiang, Z. Chen, X. Song, ComposeOn Academy: Transforming Melodic Ideas into Complete Compositions Integrating Music Learning, arXiv preprint arXiv:2502.15255, 2025.
- M. Navarro-Caceres, H.G. Oliveira, P. Martins, A. Cardoso, Integration of a music generator and a song lyrics generator to create Spanish popular songs, Journal of Ambient Intelligence and Humanized Computing, 11 (2020) 4421-4437.
- X. Ma, Y. Wang, M.-Y. Kan, W.S. Lee, AI-lyricist: Generating music and vocabulary constrained lyrics, In: ACM International Conference on Multimedia, 2021.
- O. Vechtomova, G. Sahu, D. Kumar, Lyricjam: A system for generating lyrics for live instrumental music, arXiv preprint arXiv:2106.01960, 2021.
- X. Ma, V. Sharma, M.-Y. Kan, W.S. Lee, Y. Wang, KeYric: Unsupervised Keywords Extraction and Expansion from Music for Coherent Lyrics Generation, ACM Transactions on Multimedia Computing, Communications and Applications, 2024, 1-28.
- D.P. Kingma, M. Welling, et al., Auto-encoding variational bayes, In: International Conference on Learning Representations, 2013.
- A. Telikani, A. Tahmassebi, W. Banzhaf, A.H. Gandomi, Evolutionary Machine Learning: A Survey, ACM Computing Surveys, 54 (2022) 1-35.
- S. Tian, C. Zhang, W. Yuan, W. Tan, W. Zhu, XMusic: Towards a Generalized and Controllable Symbolic Music Generation Framework, arXiv preprint, 2025.
- A. Muhamed, L. Li, X. Shi, S. Yaddanapudi, W. Chi, D. Jackson, R. Suresh, Z.C. Lipton, A.J. Smola, Symbolic music generation with transformer-gans, In: AAAI Conference on Artificial Intelligence (AAAI), 35 (2021) 408-417.
- P. Neves, J. Fornari, J. Florindo, Generating Music with Sentiment using Transformer-GANs, arXiv preprint, 2022.
- Y.-H. Lan, W.-Y. Hsiao, H.-C. Cheng, Y.-H. Yang, MusiConGen: Rhythm and Chord Control for Transformer-based Text-to-Music Generation, arXiv preprint, 2024.
- C.-Z.A. Huang, A. Vaswani, J. Uszkoreit, N. Shazeer, C. Hawthorne, A.M. Dai, M.D. Hoffman, D. Eck, An Improved Relative Self-Attention Mechanism for Transformer with Application to Music Generation, CoRR, abs/1809.04281 (2018).
- C. Donahue, H.H. Mao, Y.E. Li, G.W. Cottrell, J. McAuley, LakhNES: Improving multi-instrumental music generation with cross-domain pre-training, arXiv preprint arXiv:1907.04868, 2019.
- J. Ens, P. Pasquier, Mmm: Exploring conditional multi-track music generation with the transformer, arXiv preprint arXiv:2008.06048, 2020.
- Y.-S. Huang, Y.-H. Yang, Pop music transformer: Beat-based modeling and generation of expressive pop piano compositions, In: ACM International Conference on Multimedia, 2020, 1180-1188.
- G. Hadjeres, L. Crestel, The piano inpainting application, arXiv preprint arXiv:2107.05944, 2021.
- D. Makris, K.R. Agres, D. Herremans, Generating lead sheets with affect: A novel conditional seq2seq framework, In: International Joint Conference on Neural Networks (IJCNN), 2021, 1-8.
- J. Zhou, H. Zhu, X. Wang, Choir Transformer: Generating Polyphonic Music with Relative Attention on Transformer, arXiv preprint, 2023.
- J. Luo, X. Yang, D. Herremans, BandControlNet: Parallel Transformers-based Steerable Popular Music Generation with Fine-Grained Spatiotemporal Features, arXiv preprint, 2024.
- Y. Zhu, K. Olszewski, Y. Wu, P. Achlioptas, M. Chai, Y. Yan, S. Tulyakov, Quantized GAN for Complex Music Generation from Dance Videos, arXiv preprint, 2022.
- M. Han, S. Soradi-Zeid, T. Anwlnkom, Y. Yang, Firefly Algorithm-based LSTM Model for Guzheng Tunes Switching with Big Data Analysis, Heliyon, 2024.
- J. Jeong, Y. Kim, C.W. Ahn, A multi-objective evolutionary approach to automatic melody generation, Expert Systems with Applications (ESWA), 90 (2017) 50-61.
- H.B. Lopes, F.V.C. Martins, R.T.N. Cardoso, V.F. dos Santos, Combining rules and proportions: A multiobjective approach to algorithmic composition, In: IEEE Congress on Evolutionary Computation (CEC), 2021, 2282-2289.
- C. De Felice, R. De Prisco, D. Malandrino, G. Zaccagnino, R. Zaccagnino, R. Zizza, Splicing music composition, Information Sciences, 385 (2017) 196-212.
- N. Masuda, H. Iba, Musical composition by interactive evolutionary computation and latent space modeling, In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2018, 2792-2797.
- F. Mo, X. Wang, S. Li, H. Qian, A music generation model for robotic composers, In: IEEE International Conference on Robotics and Biomimetics (ROBIO), 2020, 1483-1488.
- B. Stoltz, A. Aravind, MU_PSYC: music psychology enriched genetic algorithm, In: IEEE Congress on Evolutionary Computation (CEC), 2019, 2121-2128.
- Y.-W. Wen, C.-K. Ting, Composing bossa nova by evolutionary computation, In: International Joint Conference on Neural Networks (IJCNN), 2020, 1-8.
- N. Shi, Y. Wang, Symmetry in computer-aided music composition system with social network analysis and artificial neural network methods, Journal of Ambient Intelligence and Humanized Computing, 2020, 1-16.
- R. De Prisco, G. Zaccagnino, R. Zaccagnino, Evo-Composer: An evolutionary algorithm for 4-voice music compositions, Evolutionary Computation, 28 (2020) 489-530.
- R. Sabitha, S. Majji, M. Kathiravan, S.G. Kumar, K.G. Kharade, S.R. Karanam, Artificial intelligence based music composition system - multi-algorithmic music arranger, In: International Conference on Electronics and Sustainable Communication Systems (ICESC), 2021, 1808-1813.
- Z. Zeng, L. Zhou, A memetic algorithm for Chinese traditional music composition, In: International Conference on Intelligent Computing and Signal Processing (ICSP), 2021, 187-192.
- L.R. De Azevedo Santos, C.N. Silla Jr, M.D. Costa-Abreu, A methodology for procedural piano music composition with mood templates using genetic algorithms, In: International Conference of Pattern Recognition Systems (ICPRS), 2021, 1-6.
- J. Kilb, C. Ellis, Conserving Human Creativity with Evolutionary Generative Algorithms: A Case Study in Music Generation, arXiv preprint arXiv:2406.05873, 2024.
- Z. Qiu, Y. Ren, C. Li, H. Liu, Y. Huang, Y. Yang, S. Wu, H. Zheng, J. Ji, J. Yu, et al., Mind band: a cross-media AI music composing platform, In: ACM International Conference on Multimedia, 2019, 2231-2233.
- P.-S. Cheng, C.-Y. Lai, C.-C. Chang, S.-F. Chiou, Y.-C. Yang, A variant model of TGAN for music generation, In: Asia Service Sciences and Software Engineering Conference (ASSE), 2020, 40-45.
- T. Wang, J. Liu, C. Jin, J. Li, S. Ma, An intelligent music generation based on Variational Autoencoder, In: International Conference on Culture-oriented Science & Technology (ICCST), 2020, 394-398.
- C.-F. Huang, C.-Y. Huang, Emotion-based AI music generation system with CVAE-GAN, In: IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE), 2020, 220-222.
- M.W.Y. Lam, Q. Tian, T. Li, Z. Yin, S. Feng, M. Tu, Y. Ji, R. Xia, M. Ma, X. Song, J. Chen, Y. Wang, Y. Wang, Efficient Neural Music Generation, arXiv preprint arXiv:2305.15719, 2023.
- Y. Gan, Attention-Guided Music Generation with Variational Autoencoder and Latent Diffusion, In: International Workshop on Materials Engineering and Computer Sciences (IWMECS), 2024.
- A. Tikhonov, I.P. Yamshchikov, et al., Music generation with variational recurrent autoencoder supported by history, arXiv preprint arXiv:1705.05458, 2017.
- G. Brunner, A. Konrad, Y. Wang, R. Wattenhofer, MIDI-VAE: Modeling Dynamics and Instrumentation of Music with Applications to Style Transfer, Computing Research Repository CoRR, 2018.
- A. Roberts, J. Engel, C. Raffel, C. Hawthorne, D. Eck, A Hierarchical Latent Vector Model for Learning Long-Term Structure in Music, In: International Conference on Machine Learning (ICML), 2018.
- S. Lattner, M. Grachten, High-Level Control of Drum Track Generation Using Learned Patterns of Rhythmic Interaction, In: IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), 2019.
- H.-T. Hung, C.-Y. Wang, Y.-H. Yang, H.-M. Wang, Improving Automatic Jazz Melody Generation by Transfer Learning Techniques, In: Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), 2019.
- B. Jia, J. Lv, Y. Pu, X. Yang, Impromptu accompaniment of pop music using coupled latent variable model with binary regularizer, In: International Joint Conference on Neural Networks (IJCNN), 2019, 1-6.
- Y.-Q. Lim, C.S. Chan, F.Y. Loo, ClaviNet: Generate music with different musical styles, IEEE Multi-Media, 28 (2020) 83-93.
- C. Jin, Y. Tie, Y. Bai, X. Lv, S. Liu, A style-specific music composition neural network, Neural Processing Letters, 52 (2020) 1893-1912.
- J. Zhu, K. Sakurai, R. Togo, T. Ogawa, M. Haseyama, MMT-BERT: Chord-aware Symbolic Music Generation Based on Multitrack Music Transformer and MusicBERT, arXiv preprint, 2024.
- R. Manzelli, V. Thakkar, A. Siahkamari, B. Kulis, Conditioning deep generative raw audio models for structured automatic music, arXiv preprint arXiv:1806.09905, 2018.
- P. Wiriyachaiporn, K. Chanasit, A. Suchato, P. Punyabukkana, E. Chuangsuwanich, Algorithmic music composition comparison, In: International Joint Conference on Computer Science and Software Engineering (JCSSE), 2018, 1-6.
- N. dos Santos Cunha, A. Subramanian, D. Herre-mans, Generating guitar solos by integer programming, Journal of the Operational Research Society, 69 (2018) 971-985.
- Y. Huang, A. Ghatare, Y. Liu, Z. Hu, Q. Zhang, C.S. Sastry, S. Gururani, S. Oore, Y. Yue, Symbolic Music Generation with Non-Differentiable Rule Guided Diffusion, arXiv preprint, 2024.
- Soundraw, Create custom music and beats with AI, https://soundraw.io, 2025.
- ShutterstockInc., Amper Music, https://www.shutterstock.com/discover/amper-music, 2025.
- Ecrett Music, Royalty Free Music for Creators, https://ecrettmusic.com, 2018.
- Boomy Corporation, Boomy, https://boomy.com, 2023.
- AI Tool Selection, Discover AI Tools for Your Daily Tasks, https://aitoolselection.com/zh-CN, 2025.
- H.-W. Dong, W.-Y. Hsiao, L.-C. Yang, Y.-H. Yang, Musegan: Multi-track sequential generative adversarial networks for symbolic music generation and accompaniment, In: AAAI Conference on Artificial Intelligence (AAAI), 32 (2018).
- K. Kumar, R. Kumar, T. de Boissiere, L. Gestin, W.Z. Teoh, J. Sotelo, A. de Brebisson, Y. Bengio, A. Courville, MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis, arXiv preprint, 2019.
- J. Engel, L. (Hanoi) Hantrakul, C. Gu, A. Roberts, DDSP: Differentiable Digital Signal Processing, In: International Conference on Learning Representations, 2020.
- R. Yuan, H. Lin, S. Guo, G. Zhang, J. Pan, et al., YuE: Scaling Open Foundation Models for Long-Form Music Generation, arXiv preprint, 2025.
- H. Zulić, How AI can change/improve/influence music composition, performance and education: three case studies, INSAM Journal of Contemporary Music, Art and Technology, 2019, 100-114.
- S. Ppali, V. Lalioti, B. Branch, C.S. Ang, A.J. Thomas, B.S. Wohl, A. Covaci, Keep the VRhythm going: A musician-centred study investigating how Virtual Reality can support creative musical practice, In: CHI Conference on Human Factors in Computing Systems, 2022.
- W. Guo, Y. Huang, Z. Chen, Z. Zhang, G. Sun, Q. Zeng, X. Li, The “rebirth” of traditional musical instrument: An interactive installation based on augmented reality and somatosensory technology to empower the exhibition of chimes, Computer Animation and Virtual Worlds, 2023.
- H. Lindetorp, M. Svahn, J. Hölling, K. Falkenberg, E. Frid, Collaborative music-making: special educational needs school assistants as facilitators in performances with accessible digital musical instruments, Frontiers in Computer Science, 5 (2023).
- Y. Ma, C. Wang, Empowering music education with technology: a bibliometric perspective, Humanities and Social Sciences Communications, 2025.
- M. Biasutti, Strategies adopted during collaborative online music composition, International Journal of Music Education, 2018.
- X. Wang, Design of vocal music teaching system platform for music majors based on artificial intelligence, Wireless Communications and Mobile Computing, 2022.
- M.C. Angelides, A.K.Y. Tong, Implementing multiple tutoring strategies in an intelligent tutoring system for music learning, Journal of Information Technology, 10 (1995) 52-62.
- A. Ara, R. Gopalakrishna, A Study on Emotion Identification from Music Lyrics, In: International Conference of Reliable Information and Communication Technology (IRICT), 2020, 396-406.
- Y. Shi, Exploring Music Teaching Methods Through Core Literacy: A Deep Learning Approach with Implications for Cognitive and Emotional Development in Sports, Revista de Psicología del Deporte (Journal of Sport Psychology), 2023.
- F. Sun, Analysis of Virtual Reality-based Music Education Experience and its Impact on Learning Outcomes, Scalable Computing: Practice and Experience, 25 (2024) 4755-4762.
- K. Han, W. You, S. Shi, L. Sun, Hearing with the eyes: modulating lyrics typography for music visualization, The Visual Computer, 2024.
- A. Vargas, P. Díaz, T. Zarraonandia, Using virtual reality and music in cognitive disability therapy, In: International Conference on Advanced Visual Interfaces (AVI), 2020, 1-9.
- P. Pérez, M. Orduna, M. Nava-Ruiz, J. Martín-Boix, Using immersive video to recall significant musical experiences in elderly population with intellectual disability, In: IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), 2024, 887-888.
- E. Aras, Style learning and musical mimicry in Artificial Intelligence: modern approaches, Journal of AI, Humanities and New Ethics, 2025, 19-32.
- J. Fang, Artificial intelligence robots based on machine learning and visual algorithms for interactive experience assistance in music classrooms, Entertainment Computing, 52 (2025) 100779.
- D.T. Larose, C.D. Larose, K-nearest Neighbor Algorithm, 2014.
- C. Lee, J.-H. Hong, musicolors: Bridging Sound and Visuals For Synesthetic Creative Musical Experience, arXiv preprint arXiv:2503.14220, 2025.
- A. Dash, K. Agres, AI-based affective music generation systems: A review of methods and challenges, ACM Computing Surveys, 56 (2024) 1-34.
- L. Schaab, A. Kruspe, Joint sentiment analysis of lyrics and audio in music, arXiv preprint arXiv:2405.01988, 2024.
- J. Tobolewski, M. Sakowicz, J. Turmo Borras, B. Kostek, A bimodal deep model to capture emotions from music tracks, Journal of artificial intelligence and soft computing research, 15 (2025) 215-238.
- E.G. Duarte, I. Cossette, M.M. Wanderley, Analysis of Accessible Digital Musical Instruments through the lens of disability models: a case study with instruments targeting d/Deaf people, Frontiers in Computer Science, 5 (2023) 1158476.
- M. Biasutti, Assessing a collaborative online environment for music composition, Journal of Educational Technology & Society, 18 (2015) 49-63.
- Z.H. Yun, Y. Alshehri, N. Alnazzawi, I. Ullah, S. Noor, N. Gohar, A decision-support system for assessing the function of machine learning and artificial intelligence in music education for network games, Soft Computing, 2022.
- J. Xi, Artificial Intelligence Technology in the Assessment of Teachers’ Music Teaching Skills Training, International Journal of Educational Innovation and Science, 2023.
- M. Newman, L. Morris, J.H. Lee, Human-AI Music Creation: Understanding the Perceptions and Experiences of Music Creators for Ethical and Productive Collaboration., In: International Society for Music Information Retrieval (ISMIR), 2023.
- V. Preniqi, I. Ghinassi, J. Ive, K. Kalimeri, C. Saitis, Automatic Detection of Moral Values in Music Lyrics, arXiv preprint arXiv:2407.18787, 2024.