Have a personal or library account? Click to login
Artificial Intelligence in Music: A Bibliometric and Systematic Review of Creation, Performance, and Education Cover

Artificial Intelligence in Music: A Bibliometric and Systematic Review of Creation, Performance, and Education

Open Access
|Feb 2026

References

  1. R. Ramirez, E. Maestre, X. Serra, A rule-based evolutionary approach to music performance modeling, IEEE Transactions on Evolutionary Computation, 16 (2011) 96-107.
  2. B. Bozhanov, Computoser-rule-based, probability-driven algorithmic music composition, arXiv preprint arXiv:1412.3079, 2014.
  3. K. Hastuti, A. Azhari, A. Musdholifah, R. Supanggah, Rule-based and genetic algorithm for automatic gamelan music composition, International Review on Modelling and Simulations, 10 (2017) 202-212.
  4. Y. Chen, Y. Sun, The Usage of Artificial Intelligence Technology in Music Education System under Deep Learning, IEEE Access, 2024.
  5. Y. Chen, Innovation of Music Teaching Methods in Universities Based on Fuzzy Decision Support Systems and Deep Learning, International Journal of Fuzzy Systems, 2025.
  6. P. Suthaphan, V. Boonrod, N. Kumyaito, K. Tamee, Music generator for elderly using deep learning, In: Joint International conference on digital arts, media and technology with ECTI northern section conference on electrical, electronics, computer and telecommunication engineering, 2021, 289-292.
  7. J.-P. Briot, G. Hadjeres, F.-D. Pachet, Deep learning techniques for music generation, Springer, 2020.
  8. A. Huang, R. Wu, Deep learning for music, arXiv preprint arXiv:1606.04930, 2016.
  9. W. Bian, Y. Song, N. Gu, T.Y. Chan, T.T. Lo, T.S. Li, K.C. Wong, W. Xue, R.A. Trillo, MoMusic: A motion-driven human-AI collaborative music composition and performing system, In: AAAI Conference on Artificial Intelligence (AAAI), 37 (2023) 16057-16062.
  10. Z. Xu, D. Dutta, Y.-L. Wei, R.R. Choudhury, Multi-Source Music Generation with Latent Diffusion, arXiv preprint, 2025.
  11. W.-H. Kai, K.-X. Xing, Video-driven musical composition using large language model with memory-augmented state space, The Visual Computer, 2024, 1-13.
  12. P. Pasquier, J. Ens, N. Fradet, P. Triana, D. Rizzotti, J.-B. Rolland, M. Safi, MIDI-GPT: A Controllable Generative Model for Computer-Assisted Multitrack Music Composition, arXiv preprint arXiv:2501.17011, 2025.
  13. M. Grachten, S. Lattner, E. Deruty, Bassnet: A variational gated autoencoder for conditional generation of bass guitar tracks with learned interactive control, Applied Sciences, 10 (2020) 6627.
  14. S. Oore, I. Simon, S. Dieleman, D. Eck, K. Simonyan, This time with feeling: Learning expressive musical performance, Neural Computing and Applications, 32 (2020) 955-967.
  15. D. Kim, H.-W. Dong, D. Jeong, ViolinDiff: Enhancing Expressive Violin Synthesis with Pitch Bend Conditioning, arXiv preprint arXiv:2409.12477, 2024.
  16. Y.-J. Lin, H.-K. Kao, Y.-C. Tseng, M. Tsai, L. Su, A human-computer duet system for music performance, In: ACM International Conference on Multimedia, 2020, 772-780.
  17. D. Stefani, M. Tomasetti, F. Angeloni, L. Turchet, et al., Esteso: Interactive AI Music Duet Based on Player-Idiosyncratic Extended Double Bass Techniques, In: Proceedings of the International Conference on New Interfaces for Musical Expression (NIME’24), 2024.
  18. M. Sanganeria, R. Gala, Tuning Music Education: AI-Powered Personalization in Learning Music, arXiv preprint arXiv:2412.13514, 2024.
  19. Z. Ying, Experience of intelligent speech robot in music online classroom based on deep learning and virtual reality, Entertainment Computing, 52 (2025) 100795.
  20. J. Wu, X. Liu, X. Hu, J. Zhu, PopMNet: Generating structured pop music melodies using neural networks, Artificial Intelligence, 286 (2020) 103303.
  21. J. Grekow, T. Dimitrova, Monophonic music generation with a given emotion using conditional variational autoencoder, IEEE Access, 9 (2021) 129088-129101.
  22. W. Wang, J. Li, Y. Li, X. Xing, Style-conditioned Music Generation with Transformer-GANs, Frontiers of Information Technology & Electronic Engineering, 2024.
  23. K. Choi, J. Park, W. Heo, S. Jeon, J. Park, Chord conditioned melody generation with transformer-based decoders, IEEE Access, 9 (2021) 42071-42080.
  24. S. Lattner, M. Grachten, G. Widmer, Imposing higher-level structure in polyphonic music generation using convolutional restricted boltzmann machines and constraints, Journal of Creative Music Systems, 2 (2018) 1-31.
  25. X. Zhou, P. Yu, Social robots based on sensor technology simulate user music interaction experience, Entertainment Computing, 51 (2024) 100751.
  26. D. Wang, X. Guo, Research on evaluation model of music education informatization system based on machine learning, Scientific Programming, 2022.
  27. C. Hernandez-Olivan, J.R. Beltran, Music composition with deep learning: A review, In: Advances in Speech and Music Technology: Computational Aspects and Applications, 2022.
  28. C.-H. Liu, C.-K. Ting, Computational intelligence in music composition: A survey, IEEE Transactions on Emerging Topics in Computational Intelligence, 1 (2016) 2-15.
  29. M. Evin, A review on AI-enabled techniques for evaluating musician’s performance, In: AIP Conference Proceedings, 3149 (2024).
  30. S. Holland, Artificial intelligence in music education: A critical review, In: Readings in Music and Artificial Intelligence, 2013, 239-274.
  31. J.F. Merchán Sánchez-Jara, S. González Gutiérrez, J. Cruz Rodríguez, B. Syroyid Syroyid, Artificial Intelligence-Assisted Music Education: A Critical Synthesis of Challenges and Opportunities, Education Sciences, 14 (2024) 1171.
  32. K. O’shea, R. Nash, An introduction to convolutional neural networks, arXiv preprint arXiv:1511.08458, 2015.
  33. Y. Han, Exploring a digital music teaching model integrated with recurrent neural networks under artificial intelligence, Scientific Reports, 2025.
  34. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I. Polosukhin, Attention is All you Need, Advances in Neural Information Processing Systems, 2017.
  35. P.L. Diéguez, V.-W. Soo, Variational autoencoders for polyphonic music interpolation, In: International Conference on Technologies and Applications of Artificial Intelligence (TAAI), 2020, 56-61.
  36. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial networks, Communications of the ACM, 63 (2020) 139-144.
  37. J. Zhang, G. Fazekas, C. Saitis, Composer Style-specific Symbolic Music Generation Using Vector Quantized Discrete Diffusion Models, arXiv preprint, 2024.
  38. P. Xiao, Enhancing emotional expression in algorithmic music composition systems using reinforcement learning, Journal of Computational Methods in Sciences and Engineering, 2025.
  39. L. Liu, R. Gong, Y. Yang, MusDiff: A multimodal-guided framework for music generation, Alexandria Engineering Journal, 129 (2025) 128-136.
  40. A. Agostinelli, T.I. Denk, Z. Borsos, J. Engel, M. Verzetti, A. Caillon, Q. Huang, A. Jansen, A. Roberts, M. Tagliasacchi, et al., Musiclm: Generating music from text, arXiv preprint arXiv:2301.11325, 2023.
  41. P. Dhariwal, H. Jun, C. Payne, J.W. Kim, A. Rad-ford, I. Sutskever, Jukebox: A Generative Model for Music, arXiv preprint arXiv:2005.00341, 2020.
  42. C. Payne, MuseNet, OpenAI Blog, 3 (2019).
  43. Google AI, Magenta: Make Music and Art Using Machine Learning, https://magenta.withgoogle.com/, 2025.
  44. Aiva Technologies SARL, Personal AI music generation assistant, https://www.aiva.ai, 2025.
  45. S. Forsgren, H. Martiros, Riffusion - Stable diffusion for real-time music generation, https://riffusion.com/about, 2022.
  46. M. Aria, C. Cuccurullo, Bibliometrix: An R-tool for comprehensive science mapping analysis, Journal of Informetrics, 11 (2017) 959-975.
  47. C. Jin, T. Wang, X. Li, C.J.J. Tie, Y. Tie, S. Liu, M. Yan, Y. Li, J. Wang, S. Huang, A Transformer Generative Adversarial Network for Multi-track Music Generation, CAAI Transactions on Intelligence Technology, 2022.
  48. C. Gao, F. Reuben, T. Collins, Variation Transformer: New datasets, models, and comparative evaluation for symbolic music variation generation, In: Proceedings of the conference, 2024.
  49. J. Zhang, G. Fazekas, C. Saitis, Fast Diffusion GAN Model for Symbolic Music Generation Controlled by Emotions, arXiv preprint, 2023.
  50. C. Palmer, Music performance, Annual Review of Psychology, 1997.
  51. D.J. Hargreaves, N.A. Marshall, A.C. North, Music education in the twenty-first century: A psychological perspective, British Journal of Music Education, 2003.
  52. N. Van Eck, L. Waltman, Software survey: VOSviewer, a computer program for bibliometric mapping, Scientometrics, 2009.
  53. A. Ycart, E. Benetos, Learning and evaluation methodologies for polyphonic music sequence prediction with LSTMs, IEEE/ACM Transactions on Audio, Speech, and Language Processing, 28 (2020) 1328-1341.
  54. Y. Yan, Z. Duan, Measure by Measure: Measure-Based Automatic Music Composition with Modern Staff Notation, Transactions of the International Society for Music Information Retrieval (ISMIR), 2024.
  55. M. Tomasetti, L. Turchet, Handheld controller-based locomotion in Virtual Reality as an approach to interactive music composition: insights from composers’ preferences, Digital Creativity, 2024.
  56. S. Zhang, X. Lu, X. Liu, Study on the Influence of AI Composition Software on Students‘ Creative Ability in Music Education, Journal of Educational Technology and Innovation (JETI), 2024.
  57. H. Pu, F. Jiang, Z. Chen, X. Song, ComposeOn Academy: Transforming Melodic Ideas into Complete Compositions Integrating Music Learning, arXiv preprint arXiv:2502.15255, 2025.
  58. M. Navarro-Caceres, H.G. Oliveira, P. Martins, A. Cardoso, Integration of a music generator and a song lyrics generator to create Spanish popular songs, Journal of Ambient Intelligence and Humanized Computing, 11 (2020) 4421-4437.
  59. X. Ma, Y. Wang, M.-Y. Kan, W.S. Lee, AI-lyricist: Generating music and vocabulary constrained lyrics, In: ACM International Conference on Multimedia, 2021.
  60. O. Vechtomova, G. Sahu, D. Kumar, Lyricjam: A system for generating lyrics for live instrumental music, arXiv preprint arXiv:2106.01960, 2021.
  61. X. Ma, V. Sharma, M.-Y. Kan, W.S. Lee, Y. Wang, KeYric: Unsupervised Keywords Extraction and Expansion from Music for Coherent Lyrics Generation, ACM Transactions on Multimedia Computing, Communications and Applications, 2024, 1-28.
  62. D.P. Kingma, M. Welling, et al., Auto-encoding variational bayes, In: International Conference on Learning Representations, 2013.
  63. A. Telikani, A. Tahmassebi, W. Banzhaf, A.H. Gandomi, Evolutionary Machine Learning: A Survey, ACM Computing Surveys, 54 (2022) 1-35.
  64. S. Tian, C. Zhang, W. Yuan, W. Tan, W. Zhu, XMusic: Towards a Generalized and Controllable Symbolic Music Generation Framework, arXiv preprint, 2025.
  65. A. Muhamed, L. Li, X. Shi, S. Yaddanapudi, W. Chi, D. Jackson, R. Suresh, Z.C. Lipton, A.J. Smola, Symbolic music generation with transformer-gans, In: AAAI Conference on Artificial Intelligence (AAAI), 35 (2021) 408-417.
  66. P. Neves, J. Fornari, J. Florindo, Generating Music with Sentiment using Transformer-GANs, arXiv preprint, 2022.
  67. Y.-H. Lan, W.-Y. Hsiao, H.-C. Cheng, Y.-H. Yang, MusiConGen: Rhythm and Chord Control for Transformer-based Text-to-Music Generation, arXiv preprint, 2024.
  68. C.-Z.A. Huang, A. Vaswani, J. Uszkoreit, N. Shazeer, C. Hawthorne, A.M. Dai, M.D. Hoffman, D. Eck, An Improved Relative Self-Attention Mechanism for Transformer with Application to Music Generation, CoRR, abs/1809.04281 (2018).
  69. C. Donahue, H.H. Mao, Y.E. Li, G.W. Cottrell, J. McAuley, LakhNES: Improving multi-instrumental music generation with cross-domain pre-training, arXiv preprint arXiv:1907.04868, 2019.
  70. J. Ens, P. Pasquier, Mmm: Exploring conditional multi-track music generation with the transformer, arXiv preprint arXiv:2008.06048, 2020.
  71. Y.-S. Huang, Y.-H. Yang, Pop music transformer: Beat-based modeling and generation of expressive pop piano compositions, In: ACM International Conference on Multimedia, 2020, 1180-1188.
  72. G. Hadjeres, L. Crestel, The piano inpainting application, arXiv preprint arXiv:2107.05944, 2021.
  73. D. Makris, K.R. Agres, D. Herremans, Generating lead sheets with affect: A novel conditional seq2seq framework, In: International Joint Conference on Neural Networks (IJCNN), 2021, 1-8.
  74. J. Zhou, H. Zhu, X. Wang, Choir Transformer: Generating Polyphonic Music with Relative Attention on Transformer, arXiv preprint, 2023.
  75. J. Luo, X. Yang, D. Herremans, BandControlNet: Parallel Transformers-based Steerable Popular Music Generation with Fine-Grained Spatiotemporal Features, arXiv preprint, 2024.
  76. Y. Zhu, K. Olszewski, Y. Wu, P. Achlioptas, M. Chai, Y. Yan, S. Tulyakov, Quantized GAN for Complex Music Generation from Dance Videos, arXiv preprint, 2022.
  77. M. Han, S. Soradi-Zeid, T. Anwlnkom, Y. Yang, Firefly Algorithm-based LSTM Model for Guzheng Tunes Switching with Big Data Analysis, Heliyon, 2024.
  78. J. Jeong, Y. Kim, C.W. Ahn, A multi-objective evolutionary approach to automatic melody generation, Expert Systems with Applications (ESWA), 90 (2017) 50-61.
  79. H.B. Lopes, F.V.C. Martins, R.T.N. Cardoso, V.F. dos Santos, Combining rules and proportions: A multiobjective approach to algorithmic composition, In: IEEE Congress on Evolutionary Computation (CEC), 2021, 2282-2289.
  80. C. De Felice, R. De Prisco, D. Malandrino, G. Zaccagnino, R. Zaccagnino, R. Zizza, Splicing music composition, Information Sciences, 385 (2017) 196-212.
  81. N. Masuda, H. Iba, Musical composition by interactive evolutionary computation and latent space modeling, In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2018, 2792-2797.
  82. F. Mo, X. Wang, S. Li, H. Qian, A music generation model for robotic composers, In: IEEE International Conference on Robotics and Biomimetics (ROBIO), 2020, 1483-1488.
  83. B. Stoltz, A. Aravind, MU_PSYC: music psychology enriched genetic algorithm, In: IEEE Congress on Evolutionary Computation (CEC), 2019, 2121-2128.
  84. Y.-W. Wen, C.-K. Ting, Composing bossa nova by evolutionary computation, In: International Joint Conference on Neural Networks (IJCNN), 2020, 1-8.
  85. N. Shi, Y. Wang, Symmetry in computer-aided music composition system with social network analysis and artificial neural network methods, Journal of Ambient Intelligence and Humanized Computing, 2020, 1-16.
  86. R. De Prisco, G. Zaccagnino, R. Zaccagnino, Evo-Composer: An evolutionary algorithm for 4-voice music compositions, Evolutionary Computation, 28 (2020) 489-530.
  87. R. Sabitha, S. Majji, M. Kathiravan, S.G. Kumar, K.G. Kharade, S.R. Karanam, Artificial intelligence based music composition system - multi-algorithmic music arranger, In: International Conference on Electronics and Sustainable Communication Systems (ICESC), 2021, 1808-1813.
  88. Z. Zeng, L. Zhou, A memetic algorithm for Chinese traditional music composition, In: International Conference on Intelligent Computing and Signal Processing (ICSP), 2021, 187-192.
  89. L.R. De Azevedo Santos, C.N. Silla Jr, M.D. Costa-Abreu, A methodology for procedural piano music composition with mood templates using genetic algorithms, In: International Conference of Pattern Recognition Systems (ICPRS), 2021, 1-6.
  90. J. Kilb, C. Ellis, Conserving Human Creativity with Evolutionary Generative Algorithms: A Case Study in Music Generation, arXiv preprint arXiv:2406.05873, 2024.
  91. Z. Qiu, Y. Ren, C. Li, H. Liu, Y. Huang, Y. Yang, S. Wu, H. Zheng, J. Ji, J. Yu, et al., Mind band: a cross-media AI music composing platform, In: ACM International Conference on Multimedia, 2019, 2231-2233.
  92. P.-S. Cheng, C.-Y. Lai, C.-C. Chang, S.-F. Chiou, Y.-C. Yang, A variant model of TGAN for music generation, In: Asia Service Sciences and Software Engineering Conference (ASSE), 2020, 40-45.
  93. T. Wang, J. Liu, C. Jin, J. Li, S. Ma, An intelligent music generation based on Variational Autoencoder, In: International Conference on Culture-oriented Science & Technology (ICCST), 2020, 394-398.
  94. C.-F. Huang, C.-Y. Huang, Emotion-based AI music generation system with CVAE-GAN, In: IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE), 2020, 220-222.
  95. M.W.Y. Lam, Q. Tian, T. Li, Z. Yin, S. Feng, M. Tu, Y. Ji, R. Xia, M. Ma, X. Song, J. Chen, Y. Wang, Y. Wang, Efficient Neural Music Generation, arXiv preprint arXiv:2305.15719, 2023.
  96. Y. Gan, Attention-Guided Music Generation with Variational Autoencoder and Latent Diffusion, In: International Workshop on Materials Engineering and Computer Sciences (IWMECS), 2024.
  97. A. Tikhonov, I.P. Yamshchikov, et al., Music generation with variational recurrent autoencoder supported by history, arXiv preprint arXiv:1705.05458, 2017.
  98. G. Brunner, A. Konrad, Y. Wang, R. Wattenhofer, MIDI-VAE: Modeling Dynamics and Instrumentation of Music with Applications to Style Transfer, Computing Research Repository CoRR, 2018.
  99. A. Roberts, J. Engel, C. Raffel, C. Hawthorne, D. Eck, A Hierarchical Latent Vector Model for Learning Long-Term Structure in Music, In: International Conference on Machine Learning (ICML), 2018.
  100. S. Lattner, M. Grachten, High-Level Control of Drum Track Generation Using Learned Patterns of Rhythmic Interaction, In: IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), 2019.
  101. H.-T. Hung, C.-Y. Wang, Y.-H. Yang, H.-M. Wang, Improving Automatic Jazz Melody Generation by Transfer Learning Techniques, In: Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), 2019.
  102. B. Jia, J. Lv, Y. Pu, X. Yang, Impromptu accompaniment of pop music using coupled latent variable model with binary regularizer, In: International Joint Conference on Neural Networks (IJCNN), 2019, 1-6.
  103. Y.-Q. Lim, C.S. Chan, F.Y. Loo, ClaviNet: Generate music with different musical styles, IEEE Multi-Media, 28 (2020) 83-93.
  104. C. Jin, Y. Tie, Y. Bai, X. Lv, S. Liu, A style-specific music composition neural network, Neural Processing Letters, 52 (2020) 1893-1912.
  105. J. Zhu, K. Sakurai, R. Togo, T. Ogawa, M. Haseyama, MMT-BERT: Chord-aware Symbolic Music Generation Based on Multitrack Music Transformer and MusicBERT, arXiv preprint, 2024.
  106. R. Manzelli, V. Thakkar, A. Siahkamari, B. Kulis, Conditioning deep generative raw audio models for structured automatic music, arXiv preprint arXiv:1806.09905, 2018.
  107. P. Wiriyachaiporn, K. Chanasit, A. Suchato, P. Punyabukkana, E. Chuangsuwanich, Algorithmic music composition comparison, In: International Joint Conference on Computer Science and Software Engineering (JCSSE), 2018, 1-6.
  108. N. dos Santos Cunha, A. Subramanian, D. Herre-mans, Generating guitar solos by integer programming, Journal of the Operational Research Society, 69 (2018) 971-985.
  109. Y. Huang, A. Ghatare, Y. Liu, Z. Hu, Q. Zhang, C.S. Sastry, S. Gururani, S. Oore, Y. Yue, Symbolic Music Generation with Non-Differentiable Rule Guided Diffusion, arXiv preprint, 2024.
  110. Soundraw, Create custom music and beats with AI, https://soundraw.io, 2025.
  111. ShutterstockInc., Amper Music, https://www.shutterstock.com/discover/amper-music, 2025.
  112. Ecrett Music, Royalty Free Music for Creators, https://ecrettmusic.com, 2018.
  113. Boomy Corporation, Boomy, https://boomy.com, 2023.
  114. AI Tool Selection, Discover AI Tools for Your Daily Tasks, https://aitoolselection.com/zh-CN, 2025.
  115. H.-W. Dong, W.-Y. Hsiao, L.-C. Yang, Y.-H. Yang, Musegan: Multi-track sequential generative adversarial networks for symbolic music generation and accompaniment, In: AAAI Conference on Artificial Intelligence (AAAI), 32 (2018).
  116. K. Kumar, R. Kumar, T. de Boissiere, L. Gestin, W.Z. Teoh, J. Sotelo, A. de Brebisson, Y. Bengio, A. Courville, MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis, arXiv preprint, 2019.
  117. J. Engel, L. (Hanoi) Hantrakul, C. Gu, A. Roberts, DDSP: Differentiable Digital Signal Processing, In: International Conference on Learning Representations, 2020.
  118. R. Yuan, H. Lin, S. Guo, G. Zhang, J. Pan, et al., YuE: Scaling Open Foundation Models for Long-Form Music Generation, arXiv preprint, 2025.
  119. H. Zulić, How AI can change/improve/influence music composition, performance and education: three case studies, INSAM Journal of Contemporary Music, Art and Technology, 2019, 100-114.
  120. S. Ppali, V. Lalioti, B. Branch, C.S. Ang, A.J. Thomas, B.S. Wohl, A. Covaci, Keep the VRhythm going: A musician-centred study investigating how Virtual Reality can support creative musical practice, In: CHI Conference on Human Factors in Computing Systems, 2022.
  121. W. Guo, Y. Huang, Z. Chen, Z. Zhang, G. Sun, Q. Zeng, X. Li, The “rebirth” of traditional musical instrument: An interactive installation based on augmented reality and somatosensory technology to empower the exhibition of chimes, Computer Animation and Virtual Worlds, 2023.
  122. H. Lindetorp, M. Svahn, J. Hölling, K. Falkenberg, E. Frid, Collaborative music-making: special educational needs school assistants as facilitators in performances with accessible digital musical instruments, Frontiers in Computer Science, 5 (2023).
  123. Y. Ma, C. Wang, Empowering music education with technology: a bibliometric perspective, Humanities and Social Sciences Communications, 2025.
  124. M. Biasutti, Strategies adopted during collaborative online music composition, International Journal of Music Education, 2018.
  125. X. Wang, Design of vocal music teaching system platform for music majors based on artificial intelligence, Wireless Communications and Mobile Computing, 2022.
  126. M.C. Angelides, A.K.Y. Tong, Implementing multiple tutoring strategies in an intelligent tutoring system for music learning, Journal of Information Technology, 10 (1995) 52-62.
  127. A. Ara, R. Gopalakrishna, A Study on Emotion Identification from Music Lyrics, In: International Conference of Reliable Information and Communication Technology (IRICT), 2020, 396-406.
  128. Y. Shi, Exploring Music Teaching Methods Through Core Literacy: A Deep Learning Approach with Implications for Cognitive and Emotional Development in Sports, Revista de Psicología del Deporte (Journal of Sport Psychology), 2023.
  129. F. Sun, Analysis of Virtual Reality-based Music Education Experience and its Impact on Learning Outcomes, Scalable Computing: Practice and Experience, 25 (2024) 4755-4762.
  130. K. Han, W. You, S. Shi, L. Sun, Hearing with the eyes: modulating lyrics typography for music visualization, The Visual Computer, 2024.
  131. A. Vargas, P. Díaz, T. Zarraonandia, Using virtual reality and music in cognitive disability therapy, In: International Conference on Advanced Visual Interfaces (AVI), 2020, 1-9.
  132. P. Pérez, M. Orduna, M. Nava-Ruiz, J. Martín-Boix, Using immersive video to recall significant musical experiences in elderly population with intellectual disability, In: IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), 2024, 887-888.
  133. E. Aras, Style learning and musical mimicry in Artificial Intelligence: modern approaches, Journal of AI, Humanities and New Ethics, 2025, 19-32.
  134. J. Fang, Artificial intelligence robots based on machine learning and visual algorithms for interactive experience assistance in music classrooms, Entertainment Computing, 52 (2025) 100779.
  135. D.T. Larose, C.D. Larose, K-nearest Neighbor Algorithm, 2014.
  136. C. Lee, J.-H. Hong, musicolors: Bridging Sound and Visuals For Synesthetic Creative Musical Experience, arXiv preprint arXiv:2503.14220, 2025.
  137. A. Dash, K. Agres, AI-based affective music generation systems: A review of methods and challenges, ACM Computing Surveys, 56 (2024) 1-34.
  138. L. Schaab, A. Kruspe, Joint sentiment analysis of lyrics and audio in music, arXiv preprint arXiv:2405.01988, 2024.
  139. J. Tobolewski, M. Sakowicz, J. Turmo Borras, B. Kostek, A bimodal deep model to capture emotions from music tracks, Journal of artificial intelligence and soft computing research, 15 (2025) 215-238.
  140. E.G. Duarte, I. Cossette, M.M. Wanderley, Analysis of Accessible Digital Musical Instruments through the lens of disability models: a case study with instruments targeting d/Deaf people, Frontiers in Computer Science, 5 (2023) 1158476.
  141. M. Biasutti, Assessing a collaborative online environment for music composition, Journal of Educational Technology & Society, 18 (2015) 49-63.
  142. Z.H. Yun, Y. Alshehri, N. Alnazzawi, I. Ullah, S. Noor, N. Gohar, A decision-support system for assessing the function of machine learning and artificial intelligence in music education for network games, Soft Computing, 2022.
  143. J. Xi, Artificial Intelligence Technology in the Assessment of Teachers’ Music Teaching Skills Training, International Journal of Educational Innovation and Science, 2023.
  144. M. Newman, L. Morris, J.H. Lee, Human-AI Music Creation: Understanding the Perceptions and Experiences of Music Creators for Ethical and Productive Collaboration., In: International Society for Music Information Retrieval (ISMIR), 2023.
  145. V. Preniqi, I. Ghinassi, J. Ive, K. Kalimeri, C. Saitis, Automatic Detection of Moral Values in Music Lyrics, arXiv preprint arXiv:2407.18787, 2024.
Language: English
Page range: 185 - 214
Submitted on: Jul 4, 2025
|
Accepted on: Dec 27, 2025
|
Published on: Feb 9, 2026
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2026 Fei Tong, Dongjing Jiang, Qingchong Jiao, Albina Isufi, Flynnwell Jianfei Zhang, published by SAN University
This work is licensed under the Creative Commons Attribution 4.0 License.