G. Xu, Q. Cui, X. Shi, H. Ge, Z. Zhan, H. Lee, Y. Liang, R. Tai, C. Wu, Particle swarm optimization based on dimensional learning strategy, Swarm Evol. Comput. 45 (2019) 33–51.
M. Wang, Y. Ma, A differential evolution algorithm based on accompanying population and piecewise evolution strategy, Appl. Soft Comput. 143 (2023) 110390.
H. Li, H. Kang, Y. Pang, G. Sun, S. Liang, Single-objective and multi-objective mixed-variable grey wolf optimizer for joint feature selection and classifier parameter tuning, Applied Soft Computing 165 (2024) 112121.
Y. Zhang, X. Gu, A biogeography-based optimization algorithm with modified migration operator for large-scale distributed scheduling with transportation time, Expert Systems with Applications 231 (2023) 120732.
X. Xia, L. Tong, Y. Zhang, X. Xu, H. Yang, L. Gui, Y. Li, K. Li, Nfdde: A novelty-hybrid-fitness driving differential evolution algorithm, Inf. Sci. (N. Y.) 579 (2021) 33–54. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/https://doi.org/10.1016/j.ins.2021.07.082">https://doi.org/https://doi.org/10.1016/j.ins.2021.07.082</ext-link> doi: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ins.2021.07.082" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ins.2021.07.082</a>">https://doi.org/10.1016/j.ins.2021.07.082</ext-link>.
H. Song, J. Bei, H. Zhang, J. Wang, P. Zhang, Hybrid algorithm of differential evolution and flower pollination for global optimization problems, Expert Systems with Applications 237, Part A (2024) 121402. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/https://doi.org/10.1016/j.eswa.2023">https://doi.org/https://doi.org/10.1016/j.eswa.2023</ext-link>. 121402 doi: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.eswa.2023.121402" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.eswa.2023.121402</a>">https://doi.org/10.1016/j.eswa.2023.121402</ext-link>.
H. Abdel-Nabi, M. Z. Ali, A. Awajan, R. Alazrai, M. I. Daoud, P. N. Suganthan, An iterative cyclic tri-strategy hybrid stochastic fractal with adaptive differential algorithm for global numerical optimization, Information Sciences 628 (2023) 92–133. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/https://doi.org/10.1016/j.ins.2023.01.065">https://doi.org/https://doi.org/10.1016/j.ins.2023.01.065</ext-link> doi: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ins.2023.01.065" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ins.2023.01.065</a>">https://doi.org/10.1016/j.ins.2023.01.065</ext-link>.
A. Abdelshafy, H. Hassan, J. Jurasz, Optimal design of a grid-connected desalination plant powered by renewable energy resources using a hybrid pso-gwo approach, Energy Convers. Manage. 173 (2018) 331–347. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/http://dx.doi.org/10.1016/j.enconman.2018.07.083">https://doi.org/http://dx.doi.org/10.1016/j.enconman.2018.07.083</ext-link> doi: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://dx.doi.org/<a href="https://doi.org/10.1016/j.enconman.2018.07.083" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.enconman.2018.07.083</a>">http://dx.doi.org/<a href="https://doi.org/10.1016/j.enconman.2018.07.083" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.enconman.2018.07.083</a></ext-link>.
J. Pierezan, L. Coelho, Coyote optimization algorithm: a new metaheuristic for global optimization problems, in: IEEE Congress Evol. Comput., Brazil, 2018, pp. 1–8.
H. Alghamdi, Optimum placement of distribution generation units in power system with fault current limiters using improved coyote optimization algorithm, Entropy 23 (6) (2021) 655. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/https://doi.org/10.3390/e23060655">https://doi.org/https://doi.org/10.3390/e23060655</ext-link> doi: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/e23060655" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/e23060655</a>">https://doi.org/10.3390/e23060655</ext-link>.
H. Rezk, A. Fathy, M. Aly, A robust photovoltaic array reconfiguration strategy based on coyote optimization algorithm for enhancing the extracted power under partial shadow condition, Energy Rep. 7 (2021) 109–124.
M. H. Q. et al, Coyote optimization algorithm for parameters extraction of three-diode photo-voltaic models of photovoltaic modules, Energy 187 (2019).
N. Awad, M. Ali, P. Suganthan, J. Liang, B. Qu, Problem definitions and evaluation criteria for the cec 2017 special session and competition on single objective real-parameter numerical optimization, Tech. rep., Nanyang Technological University, Singapore and Jordan University of Science and Technology, Jordan and Zhengzhou University, Zhengzhou China (2017).
J. Liang, B. Qu, P. Suganthan, A. Hernandez-Diaz, Problem definitions and evaluation criteria for the cec-2013 special session on real-parameter optimization, Tech. rep., Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore (2013).
Z. Q. C. J, Differential mutation and novel social learning particle swarm optimization algorithm, Information Sciences: An International Journal 480 (2019).
J. Gou, Y. Lei, W. Guo, C. Wang, Y. Cai, W. Luo, A novel improved particle swarm optimization algorithm based on individual difference evolution, Appl. Soft Comput. 57 (2017) 468–481.
A. M. Shaheen, A. M. Elsayed, A. R. Ginidi, R. A. El-Sehiemy, E. Elattar, A heap-based algorithm with deeper exploitative feature for optimal allocations of distributed generations with feeder reconfiguration in power distribution networks, Knowledge-Based Systems 241 (2022) 108269. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.knosys.2022.108269" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.knosys.2022.108269</a>">https://doi.org/10.1016/j.knosys.2022.108269</ext-link> doi:<a href="https://doi.org/10.1016/j.knosys.2022.108269." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.knosys.2022.108269.</a>
X. M. Zhang, X. Wang, H. Y. Chen, D. D. Wang, Z. H. Fu, Improved gwo for large-scale function optimization and mlp optimization in cancer identification, Neural Computing and Applications 32 (2020) 1305–1325. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.100s00521-019-04483-4">https://doi.org/10.100s00521-019-04483-4</ext-link> doi:10.100s00521-019-04483-4.
X. Chen, K. J. Yu, Hybridizing cuckoo search algorithm with biogeography-based optimization for estimating photovoltaic model parameters, Sol. Energy 180 (2019) 192–206.
X. M. Zhang, Q. Kang, J. F. Cheng, X. Wang, A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer, Appl. Soft Comput. 67 (2018) 197–214.
L. Z. Cui, K. Zhang, G. H. Li, X. H. Fu, Z. K. Wen, N. Lu, J. Lu, Modified gbest-guided artificial bee colony algorithm with new probability model, Soft Comput. 22 (7) (2018) 2217–2243. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s00500-017-2485-y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00500-017-2485-y</a>">https://doi.org/10.1007/s00500-017-2485-y</ext-link> doi:<a href="https://doi.org/10.1007/s00500-017-2485-y." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00500-017-2485-y.</a>
P. Korosec, J. Silc, The continuous differential ant-stigmergy algorithm applied on real-parameter single objective optimization problems, in: 2013 IEEE Congress on Evolutionary Computation, 2013, p. 7.
J. Derrac, S. García, D. Molina, F. Herrera, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms, Swarm Evol. Comput. 1 (1) (2011) 3–18.
J. C. H. Phang, D. S. H. Chan, J. R. Phillips, Accurate analytical method for the extraction of solar cell model parameters, Electron Lett. 20 (10) (1984) 406. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1049/el:1984028110" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1049/el:1984028110</a>">https://doi.org/10.1049/el:1984028110</ext-link> doi:<a href="https://doi.org/10.1049/el:1984028110." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1049/el:1984028110.</a>
V. J. Chin, Z. Salam, K. Ishaque, An accurate and fast computational algorithm for the two-diode model of pv module based on a hybrid method, IEEE Trans. Ind Electron. 64 (8) (2017) 6212–6222. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1109/TIE.2017.2682023" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/TIE.2017.2682023</a>">https://doi.org/10.1109/TIE.2017.2682023</ext-link> doi:<a href="https://doi.org/10.1109/TIE.2017.2682023." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TIE.2017.2682023.</a>
P. Changmai, S. K. Nayak, S. K. Metya, Estimation of pv module parameters from the manufacturer’s datasheet for mpp estimation, IET Renew Power Gener. 14 (11) (2020) 1988–1996. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1049/iet-rpg.2019.1377" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1049/iet-rpg.2019.1377</a>">https://doi.org/10.1049/iet-rpg.2019.1377</ext-link> doi:<a href="https://doi.org/10.1049/iet-rpg.2019.1377." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1049/iet-rpg.2019.1377.</a>
L. Chaib, M. Tadj, A. Choucha, F. Z. Khemili, A. EL-Fergany, mproved crayfish optimization algorithm for parameters estimation of photovoltaic models, Energy Conversion and Management 313 (2024) 118627.
K. M. Hosny, A. A. A. ElMageed, A. A. Abohany, R. M. Hussein, M. Gaffar, Precise estimation of solar photovoltaic parameters via brown bear optimization and differential evolution, Alexandria Engineering Journal 127 (2025) 164–199.
M. Premkumar, S. Ravichandran, T. J. T. Hashim, T. C. S. Hussein, R. Abbassi, Fitness-guided particle swarm optimization with adaptive newton-raphson for photovoltaic model parameter estimation, Applied Soft Computing 167 (2024) 112295.
C. Kumar, T. D. Raj, M. Premkumar, T. D. Raj, A new stochastic slime mould optimization algorithm for the estimation of solar photovoltaic cell parameters, Optik 223 (2020) 165277.
G. Xiong, J. Zhang, D. Shi, L. Zhu, X. Yuan, Z. Tan, Winner leading competitive swarm optimizer with dynamic gaussian mutation for parameter extraction of solar photovoltaic models, Energy Convers Manage. 206 (2020) 112450. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.enconman.2019.112450" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.enconman.2019.112450</a>">https://doi.org/10.1016/j.enconman.2019.112450</ext-link> doi:<a href="https://doi.org/10.1016/j.enconman.2019.112450." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.enconman.2019.112450.</a>
G. Xiong, J. Zhang, D. Shi, Y. He, Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm, Energy Convers Manage. 174 (2018) 388–405. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.enconman.2018.08.053" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.enconman.2018.08.053</a>">https://doi.org/10.1016/j.enconman.2018.08.053</ext-link> doi:<a href="https://doi.org/10.1016/j.enconman.2018.08.053." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.enconman.2018.08.053.</a>
K. Yu, J. J. Liang, B. Y. Qu, X. Chen, H. Wang, Parameters identification of photovoltaic models using an improved jaya optimization algorithm, Energy Convers Manage. 150 (2017) 742–753. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.enconman.2017.08.063" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.enconman.2017.08.063</a>">https://doi.org/10.1016/j.enconman.2017.08.063</ext-link> doi:<a href="https://doi.org/10.1016/j.enconman.2017.08.063." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.enconman.2017.08.063.</a>
M. Abdel-Basset, D. El-Shahat, R. K. Chakrabortty, M. Ryan, Parameter estimation of photovoltaic models using an improved marine predators algorithm, Energy Convers Manage. 227 (2021) 113491. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.enconman.2020.113491" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.enconman.2020.113491</a>">https://doi.org/10.1016/j.enconman.2020.113491</ext-link> doi:<a href="https://doi.org/10.1016/j.enconman.2020.113491." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.enconman.2020.113491.</a>
M. Naeijian, A. Rahimnejad, S. M. Ebrahimi, N. Pourmousa, S. A. Gadsden, Parameter estimation of pv solar cells and modules using whippy harris hawks optimization algorithm, Energy Rep. 7 (2021) 4047–4063. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.egyr.2021.06.085" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.egyr.2021.06.085</a>">https://doi.org/10.1016/j.egyr.2021.06.085</ext-link> doi:<a href="https://doi.org/10.1016/j.egyr.2021.06.085." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.egyr.2021.06.085.</a>
C. X, Y. K, D. W, Z. W, L. G, Parameters identification of solar cell models using generalized oppositional teaching learning based optimization, Energy 99 (2016) 170–180. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2016.01.052" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2016.01.052</a>">https://doi.org/10.1016/j.energy.2016.01.052</ext-link> doi: <a href="https://doi.org/10.1016/j.energy.2016.01.052." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.energy.2016.01.052.</a>
X. G, Z. J, S. D, Z. L, Y. X, Parameter extraction of solar photovoltaic models with an either-or teaching learning based algorithm, Energy Convers Manage 224 (2020). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.enconman.2020.113395" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.enconman.2020.113395</a>">https://doi.org/10.1016/j.enconman.2020.113395</ext-link> doi:<a href="https://doi.org/10.1016/j.enconman.2020.113395." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.enconman.2020.113395.</a>