Have a personal or library account? Click to login
Hybrid Coyote Optimization with Differential Evolution and its Application to the Estimation of Solar Photovoltaic Cell Parameters Cover

Hybrid Coyote Optimization with Differential Evolution and its Application to the Estimation of Solar Photovoltaic Cell Parameters

Open Access
|Jul 2025

References

  1. G. Xu, Q. Cui, X. Shi, H. Ge, Z. Zhan, H. Lee, Y. Liang, R. Tai, C. Wu, Particle swarm optimization based on dimensional learning strategy, Swarm Evol. Comput. 45 (2019) 33–51.
  2. R. Storn, K. Price, Differential evolution – a simple and efcient heuristic for global optimization over continuous spaces, J. Global Optim. 11 (4) (1997) 341–359. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/http://dx.doi.org/10.1023/A:1008202821328">https://doi.org/http://dx.doi.org/10.1023/A:1008202821328</ext-link> doi: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://dx.doi.org/<a href="https://doi.org/10.1023/A:1008202821328" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1023/A:1008202821328</a>">http://dx.doi.org/<a href="https://doi.org/10.1023/A:1008202821328" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1023/A:1008202821328</a></ext-link>.
  3. S. Mirjalili, A. Mirgalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Softw. 69 (3) (2014) 46–61. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/http://dx.doi.org/10.1016/j.advengsoft.2013.12.007">https://doi.org/http://dx.doi.org/10.1016/j.advengsoft.2013.12.007</ext-link> doi: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://dx.doi.org/<a href="https://doi.org/10.1016/j.advengsoft.2013.12.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.advengsoft.2013.12.007</a>">http://dx.doi.org/<a href="https://doi.org/10.1016/j.advengsoft.2013.12.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.advengsoft.2013.12.007</a></ext-link>.
  4. Y. Zheng, M. Zhang, B. Zhang, Biogeographic harmony search for emergencyair transportation, Soft Comput. 20 (3) (2016) 967–977. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/http://dx.doi.org/101007/s00500-014-1556-6">https://doi.org/http://dx.doi.org/101007/s00500-014-1556-6</ext-link> doi: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://dx.doi.org/101007/s00500-014-1556-6">http://dx.doi.org/101007/s00500-014-1556-6</ext-link>.
  5. X. Zhang, Q. Lin, Three-learning strategy particle swarm algorithm for global optimization problems, Information Sciences 593 (2022) 289–313.
  6. X. Xia, Y. Xing, B. Wei, Y. Zhang, X. Li, X. Deng, L. Gui, A fitness-based multi-role particle swarm optimization, Swarm Evol. Comput. (2019) 349–364.
  7. Z.-G. Liu, X.-H. Ji, Y. Yang, H.-T. Cheng, Multi-technique diversity-based particle-swarm optimization, Inf. Sci. 577 (4) (2021) 298–323.
  8. H.-Q. Xu, S. Gu, Y.-C. Fan, X.-S. Li, Y.-F. Zhao, J. Zhao, J.-J. Wang, A strategy learning framework for particle swarm optimization algorithm, Information Sciences 619 (2023) 126–152.
  9. M. Wang, Y. Ma, A differential evolution algorithm based on accompanying population and piecewise evolution strategy, Appl. Soft Comput. 143 (2023) 110390.
  10. H. Li, H. Kang, Y. Pang, G. Sun, S. Liang, Single-objective and multi-objective mixed-variable grey wolf optimizer for joint feature selection and classifier parameter tuning, Applied Soft Computing 165 (2024) 112121.
  11. Y. Zhang, X. Gu, A biogeography-based optimization algorithm with modified migration operator for large-scale distributed scheduling with transportation time, Expert Systems with Applications 231 (2023) 120732.
  12. X. Xia, L. Tong, Y. Zhang, X. Xu, H. Yang, L. Gui, Y. Li, K. Li, Nfdde: A novelty-hybrid-fitness driving differential evolution algorithm, Inf. Sci. (N. Y.) 579 (2021) 33–54. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/https://doi.org/10.1016/j.ins.2021.07.082">https://doi.org/https://doi.org/10.1016/j.ins.2021.07.082</ext-link> doi: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ins.2021.07.082" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ins.2021.07.082</a>">https://doi.org/10.1016/j.ins.2021.07.082</ext-link>.
  13. H. Song, J. Bei, H. Zhang, J. Wang, P. Zhang, Hybrid algorithm of differential evolution and flower pollination for global optimization problems, Expert Systems with Applications 237, Part A (2024) 121402. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/https://doi.org/10.1016/j.eswa.2023">https://doi.org/https://doi.org/10.1016/j.eswa.2023</ext-link>. 121402 doi: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.eswa.2023.121402" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.eswa.2023.121402</a>">https://doi.org/10.1016/j.eswa.2023.121402</ext-link>.
  14. H. Abdel-Nabi, M. Z. Ali, A. Awajan, R. Alazrai, M. I. Daoud, P. N. Suganthan, An iterative cyclic tri-strategy hybrid stochastic fractal with adaptive differential algorithm for global numerical optimization, Information Sciences 628 (2023) 92–133. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/https://doi.org/10.1016/j.ins.2023.01.065">https://doi.org/https://doi.org/10.1016/j.ins.2023.01.065</ext-link> doi: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ins.2023.01.065" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ins.2023.01.065</a>">https://doi.org/10.1016/j.ins.2023.01.065</ext-link>.
  15. X. Zhang, Q. Kang, J. Cheng, X. Wang, A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer, Appl. Soft Comput. 67 (2018) 197–214. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/https://doi.org/10.1016/j.asoc.2018.02.049">https://doi.org/https://doi.org/10.1016/j.asoc.2018.02.049</ext-link> doi: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.asoc.2018.02.049" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.asoc.2018.02.049</a>">https://doi.org/10.1016/j.asoc.2018.02.049</ext-link>.
  16. A. Abdelshafy, H. Hassan, J. Jurasz, Optimal design of a grid-connected desalination plant powered by renewable energy resources using a hybrid pso-gwo approach, Energy Convers. Manage. 173 (2018) 331–347. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/http://dx.doi.org/10.1016/j.enconman.2018.07.083">https://doi.org/http://dx.doi.org/10.1016/j.enconman.2018.07.083</ext-link> doi: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://dx.doi.org/<a href="https://doi.org/10.1016/j.enconman.2018.07.083" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.enconman.2018.07.083</a>">http://dx.doi.org/<a href="https://doi.org/10.1016/j.enconman.2018.07.083" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.enconman.2018.07.083</a></ext-link>.
  17. W. Gong, Z. Cai, C. Ling, De/bbo: A hybrid differential evolution with biogeography-based optimization for global numerical optimization, Soft Comput 15 (4) (2011) 645–665. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/https://doi.org/10.1007/s00500-010-0591-1">https://doi.org/https://doi.org/10.1007/s00500-010-0591-1</ext-link> doi: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s00500-010-0591-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00500-010-0591-1</a>">https://doi.org/10.1007/s00500-010-0591-1</ext-link>.
  18. W. Deng, R. Chen, J. Gao, Y. Song, J. Xu, A novel parallel hybrid intelligence optimization algorithm for a function approximation problem, Comput. Math. Appl. 63 (1) (2012) 325–336. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/http://dx.doi.org/10.1016/j.camwa.2011.11.028">https://doi.org/http://dx.doi.org/10.1016/j.camwa.2011.11.028</ext-link> doi: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://dx.doi.org/<a href="https://doi.org/10.1016/j.camwa.2011.11.028" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.camwa.2011.11.028</a>">http://dx.doi.org/<a href="https://doi.org/10.1016/j.camwa.2011.11.028" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.camwa.2011.11.028</a></ext-link>.
  19. X. Chen, H. Tianfield, C. Mei, W. Du, G. Liu, Biogeography-based learning particle swarm optimization for continuous optimization problems, Soft Comput. 21, 24 (2016) 7519–7541. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/https://doi.org/10.1007/s00500-016-2307-7">https://doi.org/https://doi.org/10.1007/s00500-016-2307-7</ext-link> doi: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s00500-016-2307-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00500-016-2307-7</a>">https://doi.org/10.1007/s00500-016-2307-7</ext-link>.
  20. Z. Teng, J. Lv, L. Guo, An improved hybrid grey wolf optimization algorithm, Soft Comput. 23, 15 (2019) 6617–6631. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/http://dx.doi.org/10.1007/s00500-018-3310-y">https://doi.org/http://dx.doi.org/10.1007/s00500-018-3310-y</ext-link> doi: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://dx.doi.org/<a href="https://doi.org/10.1007/s00500-018-3310-y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00500-018-3310-y</a>">http://dx.doi.org/<a href="https://doi.org/10.1007/s00500-018-3310-y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00500-018-3310-y</a></ext-link>.
  21. D. Wolpert, W. Macready, No free lunch theorems for optimization, IEEE Trans. Evol. Comput. 1 (1) (1997) 67–82.
  22. J. Pierezan, L. Coelho, Coyote optimization algorithm: a new metaheuristic for global optimization problems, in: IEEE Congress Evol. Comput., Brazil, 2018, pp. 1–8.
  23. H. Alghamdi, Optimum placement of distribution generation units in power system with fault current limiters using improved coyote optimization algorithm, Entropy 23 (6) (2021) 655. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/https://doi.org/10.3390/e23060655">https://doi.org/https://doi.org/10.3390/e23060655</ext-link> doi: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/e23060655" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/e23060655</a>">https://doi.org/10.3390/e23060655</ext-link>.
  24. H. Rezk, A. Fathy, M. Aly, A robust photovoltaic array reconfiguration strategy based on coyote optimization algorithm for enhancing the extracted power under partial shadow condition, Energy Rep. 7 (2021) 109–124.
  25. M. H. Q. et al, Coyote optimization algorithm for parameters extraction of three-diode photo-voltaic models of photovoltaic modules, Energy 187 (2019).
  26. A. Draa, S. Bouzoubia, I. Boukhalfa, A sinusoidal differential evolution algorithm for numerical optimization, Appl. Soft Comput. 27 (2014) 99–126. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/http://dx.doi.org/10.1016/j.asoc.2014.11.003">https://doi.org/http://dx.doi.org/10.1016/j.asoc.2014.11.003</ext-link> doi: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://dx.doi.org/<a href="https://doi.org/10.1016/j.asoc.2014.11.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.asoc.2014.11.003</a>">http://dx.doi.org/<a href="https://doi.org/10.1016/j.asoc.2014.11.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.asoc.2014.11.003</a></ext-link>.
  27. N. Awad, M. Ali, P. Suganthan, J. Liang, B. Qu, Problem definitions and evaluation criteria for the cec 2017 special session and competition on single objective real-parameter numerical optimization, Tech. rep., Nanyang Technological University, Singapore and Jordan University of Science and Technology, Jordan and Zhengzhou University, Zhengzhou China (2017).
  28. J. Liang, B. Qu, P. Suganthan, A. Hernandez-Diaz, Problem definitions and evaluation criteria for the cec-2013 special session on real-parameter optimization, Tech. rep., Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore (2013).
  29. Z. Q. C. J, Differential mutation and novel social learning particle swarm optimization algorithm, Information Sciences: An International Journal 480 (2019).
  30. I. Aydilek, A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems, Appl. Soft Comput. 66 (2018) 232–249. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/http://dx.doi.org/10.1016/j.asoc.2018.02.025">https://doi.org/http://dx.doi.org/10.1016/j.asoc.2018.02.025</ext-link> doi: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://dx.doi.org/<a href="https://doi.org/10.1016/j.asoc.2018.02.025" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.asoc.2018.02.025</a>">http://dx.doi.org/<a href="https://doi.org/10.1016/j.asoc.2018.02.025" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.asoc.2018.02.025</a></ext-link>.
  31. J. Gou, Y. Lei, W. Guo, C. Wang, Y. Cai, W. Luo, A novel improved particle swarm optimization algorithm based on individual difference evolution, Appl. Soft Comput. 57 (2017) 468–481.
  32. X. Chen, H. Tianfield, C. Mei, W. Du, G. Liu, Biogeography-based learning particle swarm optimization, Soft Comput. 21, 24 (2017) 7519–7541. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s00500-016-2307-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00500-016-2307-7</a>">https://doi.org/10.1007/s00500-016-2307-7</ext-link> doi:<a href="https://doi.org/10.1007/s00500-016-2307-7." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00500-016-2307-7.</a>
  33. J. Li, J. Zhang, C. Jiang, M. Zhou, Composite particle swarm optimizer with historical memory for function optimization, IEEE Trans. Cybernetics 45 (10) (2015) 2350–2363. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1109/TCYB.2015.2424836" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/TCYB.2015.2424836</a>">https://doi.org/10.1109/TCYB.2015.2424836</ext-link> doi:<a href="https://doi.org/10.1109/TCYB.2015.2424836." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TCYB.2015.2424836.</a>
  34. X. Zhang, S. Wen, Heap-based optimizer based on three new updating strategies, Expert Systems with Applications 209 (2022) 118222.
  35. A. M. Shaheen, A. M. Elsayed, A. R. Ginidi, R. A. El-Sehiemy, E. Elattar, A heap-based algorithm with deeper exploitative feature for optimal allocations of distributed generations with feeder reconfiguration in power distribution networks, Knowledge-Based Systems 241 (2022) 108269. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.knosys.2022.108269" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.knosys.2022.108269</a>">https://doi.org/10.1016/j.knosys.2022.108269</ext-link> doi:<a href="https://doi.org/10.1016/j.knosys.2022.108269." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.knosys.2022.108269.</a>
  36. X. M. Zhang, X. Wang, H. Y. Chen, D. D. Wang, Z. H. Fu, Improved gwo for large-scale function optimization and mlp optimization in cancer identification, Neural Computing and Applications 32 (2020) 1305–1325. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.100s00521-019-04483-4">https://doi.org/10.100s00521-019-04483-4</ext-link> doi:10.100s00521-019-04483-4.
  37. Q. Tu, X. C. Chen, X. C. Liu, Multi-strategy ensemble grey wolf optimizer and its application to feature selection, Appl. Soft Comput. 76 (2019) 16–30. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.asoc.2018.11.047" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.asoc.2018.11.047</a>">https://doi.org/10.1016/j.asoc.2018.11.047</ext-link> doi:<a href="https://doi.org/10.1016/j.asoc.2018.11.047." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.asoc.2018.11.047.</a>
  38. I. B. Aydilek, A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems, Appl. Soft Comput. 66 (2018) 232–249. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.asoc.2018.02.025" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.asoc.2018.02.025</a>">https://doi.org/10.1016/j.asoc.2018.02.025</ext-link> doi:<a href="https://doi.org/10.1016/j.asoc.2018.02.025." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.asoc.2018.02.025.</a>
  39. Q. Zhang, J. Gao, H. Dong, Y. Mao, Wpd and de/bbo-rbfnn for solution of rolling bearing fault diagnosis, Neurocomputing 312 (2018) 27–33.
  40. X. Chen, K. J. Yu, Hybridizing cuckoo search algorithm with biogeography-based optimization for estimating photovoltaic model parameters, Sol. Energy 180 (2019) 192–206.
  41. X. M. Zhang, Q. Kang, J. F. Cheng, X. Wang, A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer, Appl. Soft Comput. 67 (2018) 197–214.
  42. L. Z. Cui, K. Zhang, G. H. Li, X. H. Fu, Z. K. Wen, N. Lu, J. Lu, Modified gbest-guided artificial bee colony algorithm with new probability model, Soft Comput. 22 (7) (2018) 2217–2243. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s00500-017-2485-y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00500-017-2485-y</a>">https://doi.org/10.1007/s00500-017-2485-y</ext-link> doi:<a href="https://doi.org/10.1007/s00500-017-2485-y." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00500-017-2485-y.</a>
  43. S. Talatahari, M. Azizi, Chaos game optimization: a novel metaheuristic algorithm, Artificial Intelligence Review 54 (2021) 917–1004.
  44. P. Korosec, J. Silc, The continuous differential ant-stigmergy algorithm applied on real-parameter single objective optimization problems, in: 2013 IEEE Congress on Evolutionary Computation, 2013, p. 7.
  45. S. Dhabal, P. Venkateswaran, An efficient gbest-guided cuckoo search algorithm for higher order two channel filter bank design, Swarm Evol. Comput. 33 (2017) 68–84. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.swevo.2016.10.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.swevo.2016.10.003</a>">https://doi.org/10.1016/j.swevo.2016.10.003</ext-link> doi:<a href="https://doi.org/10.1016/j.swevo.2016.10.003." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.swevo.2016.10.003.</a>
  46. J. Derrac, S. García, D. Molina, F. Herrera, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms, Swarm Evol. Comput. 1 (1) (2011) 3–18.
  47. J. C. H. Phang, D. S. H. Chan, J. R. Phillips, Accurate analytical method for the extraction of solar cell model parameters, Electron Lett. 20 (10) (1984) 406. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1049/el:1984028110" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1049/el:1984028110</a>">https://doi.org/10.1049/el:1984028110</ext-link> doi:<a href="https://doi.org/10.1049/el:1984028110." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1049/el:1984028110.</a>
  48. V. J. Chin, Z. Salam, K. Ishaque, An accurate and fast computational algorithm for the two-diode model of pv module based on a hybrid method, IEEE Trans. Ind Electron. 64 (8) (2017) 6212–6222. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1109/TIE.2017.2682023" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/TIE.2017.2682023</a>">https://doi.org/10.1109/TIE.2017.2682023</ext-link> doi:<a href="https://doi.org/10.1109/TIE.2017.2682023." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TIE.2017.2682023.</a>
  49. P. Changmai, S. K. Nayak, S. K. Metya, Estimation of pv module parameters from the manufacturer’s datasheet for mpp estimation, IET Renew Power Gener. 14 (11) (2020) 1988–1996. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1049/iet-rpg.2019.1377" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1049/iet-rpg.2019.1377</a>">https://doi.org/10.1049/iet-rpg.2019.1377</ext-link> doi:<a href="https://doi.org/10.1049/iet-rpg.2019.1377." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1049/iet-rpg.2019.1377.</a>
  50. X. Yang, W. Gong, Opposition-based jaya with population reduction for parameter estimation of photovoltaic solar cells and modules, Appl Soft Comput. 104 (2021) 107218. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.asoc.2021.107218" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.asoc.2021.107218</a>">https://doi.org/10.1016/j.asoc.2021.107218</ext-link> doi:<a href="https://doi.org/10.1016/j.asoc.2021.107218." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.asoc.2021.107218.</a>
  51. L. Chaib, M. Tadj, A. Choucha, F. Z. Khemili, A. EL-Fergany, mproved crayfish optimization algorithm for parameters estimation of photovoltaic models, Energy Conversion and Management 313 (2024) 118627.
  52. K. M. Hosny, A. A. A. ElMageed, A. A. Abohany, R. M. Hussein, M. Gaffar, Precise estimation of solar photovoltaic parameters via brown bear optimization and differential evolution, Alexandria Engineering Journal 127 (2025) 164–199.
  53. M. Premkumar, S. Ravichandran, T. J. T. Hashim, T. C. S. Hussein, R. Abbassi, Fitness-guided particle swarm optimization with adaptive newton-raphson for photovoltaic model parameter estimation, Applied Soft Computing 167 (2024) 112295.
  54. C. Kumar, T. D. Raj, M. Premkumar, T. D. Raj, A new stochastic slime mould optimization algorithm for the estimation of solar photovoltaic cell parameters, Optik 223 (2020) 165277.
  55. G. Xiong, J. Zhang, D. Shi, L. Zhu, X. Yuan, Z. Tan, Winner leading competitive swarm optimizer with dynamic gaussian mutation for parameter extraction of solar photovoltaic models, Energy Convers Manage. 206 (2020) 112450. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.enconman.2019.112450" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.enconman.2019.112450</a>">https://doi.org/10.1016/j.enconman.2019.112450</ext-link> doi:<a href="https://doi.org/10.1016/j.enconman.2019.112450." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.enconman.2019.112450.</a>
  56. G. Xiong, J. Zhang, D. Shi, Y. He, Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm, Energy Convers Manage. 174 (2018) 388–405. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.enconman.2018.08.053" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.enconman.2018.08.053</a>">https://doi.org/10.1016/j.enconman.2018.08.053</ext-link> doi:<a href="https://doi.org/10.1016/j.enconman.2018.08.053." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.enconman.2018.08.053.</a>
  57. K. Yu, J. J. Liang, B. Y. Qu, X. Chen, H. Wang, Parameters identification of photovoltaic models using an improved jaya optimization algorithm, Energy Convers Manage. 150 (2017) 742–753. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.enconman.2017.08.063" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.enconman.2017.08.063</a>">https://doi.org/10.1016/j.enconman.2017.08.063</ext-link> doi:<a href="https://doi.org/10.1016/j.enconman.2017.08.063." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.enconman.2017.08.063.</a>
  58. M. Abdel-Basset, D. El-Shahat, R. K. Chakrabortty, M. Ryan, Parameter estimation of photovoltaic models using an improved marine predators algorithm, Energy Convers Manage. 227 (2021) 113491. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.enconman.2020.113491" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.enconman.2020.113491</a>">https://doi.org/10.1016/j.enconman.2020.113491</ext-link> doi:<a href="https://doi.org/10.1016/j.enconman.2020.113491." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.enconman.2020.113491.</a>
  59. M. Naeijian, A. Rahimnejad, S. M. Ebrahimi, N. Pourmousa, S. A. Gadsden, Parameter estimation of pv solar cells and modules using whippy harris hawks optimization algorithm, Energy Rep. 7 (2021) 4047–4063. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.egyr.2021.06.085" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.egyr.2021.06.085</a>">https://doi.org/10.1016/j.egyr.2021.06.085</ext-link> doi:<a href="https://doi.org/10.1016/j.egyr.2021.06.085." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.egyr.2021.06.085.</a>
  60. Z. W, W. P, H. AA, et al., Metaphor-free dynamic spherical evolution for parameter estimation of photovoltaic modules, Energy Rep 7 (2021) 5175–5202. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.egyr.2021.07.041" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.egyr.2021.07.041</a>">https://doi.org/10.1016/j.egyr.2021.07.041</ext-link> doi:<a href="https://doi.org/10.1016/j.egyr.2021.07.041." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.egyr.2021.07.041.</a>
  61. Y. W, L. P, H. C, Simplified swarm optimization for the solar cell models parameter estimation problem, IET Renew Power Gener 11 (8) (2017) 1166–1173. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1049/iet-rpg.2016.0473" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1049/iet-rpg.2016.0473</a>">https://doi.org/10.1049/iet-rpg.2016.0473</ext-link> doi:<a href="https://doi.org/10.1049/iet-rpg.2016.0473." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1049/iet-rpg.2016.0473.</a>
  62. C. X, Y. K, D. W, Z. W, L. G, Parameters identification of solar cell models using generalized oppositional teaching learning based optimization, Energy 99 (2016) 170–180. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2016.01.052" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2016.01.052</a>">https://doi.org/10.1016/j.energy.2016.01.052</ext-link> doi: <a href="https://doi.org/10.1016/j.energy.2016.01.052." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.energy.2016.01.052.</a>
  63. X. G, Z. J, S. D, Z. L, Y. X, Parameter extraction of solar photovoltaic models with an either-or teaching learning based algorithm, Energy Convers Manage 224 (2020). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.enconman.2020.113395" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.enconman.2020.113395</a>">https://doi.org/10.1016/j.enconman.2020.113395</ext-link> doi:<a href="https://doi.org/10.1016/j.enconman.2020.113395." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.enconman.2020.113395.</a>
  64. L. JJ, Q. AK, S. PN, B. S, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions, IEEE Trans Evol Comput 10 (3) (2006) 281–295. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1109/TEVC.2005.857610" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/TEVC.2005.857610</a>">https://doi.org/10.1109/TEVC.2005.857610</ext-link> doi: <a href="https://doi.org/10.1109/TEVC.2005.857610." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TEVC.2005.857610.</a>
Language: English
Page range: 385 - 412
Submitted on: Mar 26, 2025
Accepted on: Jun 12, 2025
Published on: Jul 11, 2025
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2025 Yumin Dou, Changyuan Jin, Yuqiang Dou, Haiju Fan, Xinming Zhang, published by SAN University
This work is licensed under the Creative Commons Attribution 4.0 License.