References
- N. A. Wani, R. Kumar, J. Bedi, I. Rida et al., “Explainable AI-driven IoMT fusion: Unravelling techniques, opportunities, and challenges with explainable AI in healthcare,” Information Fusion, p. 102472, 2024.
- N. A. Wani, R. Kumar, and J. Bedi, “Harnessing fusion modeling for enhanced breast cancer classification through interpretable artificial intelligence and in-depth explanations,” Engineering Applications of Artificial Intelligence, vol. 136, p. 108939, 2024.
- L. Riaz, H. M. Qadir, G. Ali, M. Ali, M. A. Raza, A. D. Jurcut, and J. Ali, “A comprehensive joint learning system to detect skin cancer,” IEEE Access, vol. 11, pp. 79 434–79 444, 2023.
- N. Shakhovska, A. Shebeko, and Y. Prykarpatskyy, “A novel explainable AI model for medical data analysis,” Journal of Artificial Intelligence and Soft Computing Research, vol. 14, no. 2, pp. 121–137, 2024.
- Z. Wang, A. Ala, Z. Liu, W. Cui, H. Ding, G. Jin, and X. Lu, “A hybrid equilibrium optimizer based on moth flame optimization algorithm to solve global optimization problems,” Journal of Artificial Intelligence and Soft Computing Research, vol. 14, no. 3, pp. 207–235, 2024.
- A. Asif, F. Ahmed, J. A. Khan, E. Allogmani, N. El Rashidy, S. Manzoor, M. Anwar et al., “Machine learning based diagnostic paradigm in viral and non-viral hepatocellular carcinoma,” IEEE Access, 2024.
- P. Guleria, P. N. Srinivasu, and M. Hassaballah, “Diabetes prediction using shapley additive explanations and dsaas over machine learning classifiers: a novel healthcare paradigm,” Multimedia Tools and Applications, vol. 83, no. 14, pp. 40 677–40 712, 2024.
- P. N. Srinivasu, S. Ahmed, M. Hassaballah, and N. Almusallam, “An explainable artificial intelligence software system for predicting diabetes,” Heliyon, vol. 10, no. 16, p. e36112, 2024.
- A. Senapati, H. K. Tripathy, V. Sharma, and A. H. Gandomi, “Artificial intelligence for diabetic retinopathy detection: A systematic review,” Informatics in Medicine Unlocked, p. 101445, 2024.
- A. Jabbar, H. B. Liaqat, A. Akram, M. U. Sana, I. D. Azpíroz, I. D. L. T. Diez, and I. Ashraf, “A lesion-based diabetic retinopathy detection through hybrid deep learning model,” IEEE Access, vol. 12, pp. 40 019–40 036, 2024.
- M. Chetoui and M. A. Akhloufi, “Explainable end-to-end deep learning for diabetic retinopathy detection across multiple datasets,” Journal of Medical Imaging, vol. 7, no. 4, pp. 044 503–044 503, 2020.
- A.-U.-I. Rafid, S. Sanjana, M. B. Munir, and N. Sharmin, “An early-stage diagnosis of diabetic retinopathy based on ensemble framework,” Signal, Image and Video Processing, vol. 18, no. 1, pp. 735–749, 2024.
- G. Sivapriya, R. M. Devi, P. Keerthika, and V. Praveen, “Automated diagnostic classification of diabetic retinopathy with microvascular structure of fundus images using deep learning method,” Biomedical Signal Processing and Control, vol. 88, p. 105616, 2024.
- W. Alyoubi, W. Shalash, and M. Abulkhair, “Diabetic retinopathy detection through deep learning techniques: A review,” Informatics in Medicine Unlocked, vol. 20, p. 100377, 2020.
- H. Naz, N. Ahuja, and N. Rahul, “Diabetic retinopathy detection using supervised and un-supervised deep learning: a review study,” Artificial Intelligence Review, vol. 57, no. 5, pp. 1–66, 2024.
- S. Roychowdhury, D. D. Koozekanani, and K. K. Parhi, “DREAM: diabetic retinopathy analysis using machine learning,” IEEE Journal of Biomedical and Health Informatics, vol. 18, no. 5, pp. 1717–1728, 2013.
- Y. Sun, “The neural network of one-dimensional convolution-an example of the diagnosis of diabetic retinopathy,” IEEE Access, vol. 7, pp. 69 657–69 666, 2019.
- S. Kanarachos, A. Dizqah, G. Chrysakis, and M. Fitzpatrick, “Optimal design of a quadratic parameter varying vehicle suspension system using contrast-based fruit fly optimisation,” Applied Soft Computing, vol. 62, pp. 463–477, 2018.
- A. Darvish and A. Ebrahimzadeh, “Improved fruit-fly optimization algorithm and its applications in antenna arrays synthesis,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 4, pp. 1756–1766, 2018.
- W. Deng, J. Xu, and H. Zhao, “An improved Ant colony optimization algorithm based on hybrid strategies for scheduling problem,” IEEE Access, vol. 7, pp. 20 281–20 292, 2019.
- F. Hashim, H. Kashif, H. Essam, M. Mai, and A.-A. Walid, “Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems,” Applied Intelligence, vol. 51, pp. 1531–1551, 2021.
- P. Mehta, B. Yildiz, S. Sait, and A. Yildiz, “Hunger games search algorithm for global optimization of engineering design problems,” Materials Testing, vol. 64, no. 4, pp. 524–532, 2022.
- S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Advances in Engineering Software, vol. 69, pp. 46–61, 2014.
- A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen, “Harris hawks optimization: Algorithm and applications,” Future Generation Computer Systems, vol. 97, pp. 849–872, 2019.
- A. Faramarzi, M. Heidarinejad, S. Mirjalili, and A. H. Gandomi, “Marine predators algorithm: A nature-inspired metaheuristic,” Expert Systems with Applications, vol. 152, p. 113377, 2020.
- I. Ahmadianfar, A. A. Heidari, A. H. Gandomi, X. Chu, and H. Chen, “Run beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method,” Expert Systems with Applications, vol. 181, p. 115079, 2021.
- Z. Montazeri, T. Niknam, J. Aghaei, O. P. Malik, M. Dehghani, and G. Dhiman, “Golf optimization algorithm: A new game-based metaheuristic algorithm and its application to energy commitment problem considering resilience,” Biomimetics, vol. 8, no. 5, p. 386, 2023.
- C. Huang, X. Zhou, X. Ran, Y. Liu, W. Deng, and W. Deng, “Co-evolutionary competitive swarm optimizer with three-phase for large-scale complex optimization problem,” Information Sciences, vol. 619, pp. 2–18, 2023.
- Y. Liu, A. A. Heidari, Z. Cai, G. Liang, H. Chen, Z. Pan, A. Alsufyani, and S. Bourouis, “Simulated annealing-based dynamic step shuffled frog leaping algorithm: Optimal performance design and feature selection,” Neuro-computing, vol. 503, pp. 325–362, 2022.
- Y. Xue, X. Cai, and F. Neri, “A multi-objective evolutionary algorithm with interval based initialization and self-adaptive crossover operator for large-scale feature selection in classification,” Applied Soft Computing, vol. 127, p. 109420, 2022.
- W. Deng, J. Xu, X.-Z. Gao, and H. Zhao, “An enhanced MSIQDE algorithm with novel multiple strategies for global optimization problems,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 3, pp. 1578–1587, 2020.
- N. E. Chalabi, A. Attia, A. Bouziane, M. Hassaballah, A. Alanazi, and A. Binbusayyis, “An archive-guided equilibrium optimizer based on epsilon dominance for multi-objective optimization problems,” Mathematics, vol. 11, no. 12, p. 2680, 2023.
- K. Yu, D. Zhang, J. Liang, K. Chen, C. Yue, K. Qiao, and L. Wang, “A correlation-guided layered prediction approach for evolutionary dynamic multiobjective optimization,” IEEE Transactions on Evolutionary Computation, vol. 17, no. 5, pp. 1398–1412, 2023.
- S. Shi and H. Xiong, “Solving the multi-objective job shop scheduling problems with overtime consideration by an enhanced NSGAII,” Computers & Industrial Engineering, p. 110001, 2024.
- R. Salgotra, P. Sharma, S. Raju, and A. H. gandomi, “A contemporary systematic review on meta-heuristic optimization algorithms with their MATLAB and Python code reference,” Archives of Computational Methods in Engineering, vol. 31, pp. 1749–1822, 2024.
- R. Casanova, S. Saldana, E. Y. Chew, R. P. Danis, C. M. Greven, and W. T. Ambrosius, “Application of random forests methods to diabetic retinopathy classification analyses,” PLOS One, vol. 9, no. 6, p. e98587, 2014.
- Y. Kang, Y. Fang, and X. Lai, “Automatic detection of diabetic retinopathy with statistical method and Bayesian classifier,” Journal of Medical Imaging and Health Informatics, vol. 10, no. 5, pp. 1225–1233, 2020.
- B. V. Ratna and R. K. Senapati, “Bright lesion detection in color fundus images based on texture features,” Bulletin of Electrical Engineering and Informatics, vol. 5, no. 1, pp. 92–100, 2016.
- W. Zhou, C. Wu, D. Chen, Y. Yi, and W. Du, “Automatic microaneurysm detection using the sparse principal component analysis-based un-supervised classification method,” IEEE Access, vol. 5, pp. 2563–2572, 2017.
- M. Chetoui, M. A. Akhloufi, and M. Kardouchi, “Diabetic retinopathy detection using machine learning and texture features,” in IEEE Canadian Conference on Electrical & Computer Engineering. IEEE, 2018, pp. 1–4.
- M. Hardas, S. Mathur, A. Bhaskar, and M. Kalla, “Retinal fundus image classification for diabetic retinopathy using svm predictions,” Physical and Engineering Sciences in Medicine, vol. 45, no. 3, pp. 781–791, 2022.
- H. Yao, S. Wu, Z. Zhan, Z. Li et al., “A classification tree model with optical coherence tomography angiography variables to screen early-stage diabetic retinopathy in diabetic patients,” Journal of Ophthalmology, vol. 2022, 2022.
- B. N. Narayanan, R. C. Hardie, M. S. De Silva, and N. K. Kueterman, “Hybrid machine learning architecture for automated detection and grading of retinal images for diabetic retinopathy,” Journal of Medical Imaging, vol. 7, no. 3, pp. 034 501–034 501, 2020.
- N. Sikder, M. Masud, A. Bairagi, A. Arif, A. Nahid, and H. Alhumyani, “Severity classification of diabetic retinopathy using an ensemble learning algorithm through analyzing retinal images,” Symmetry, vol. 13, no. 4, p. 670, 2021.
- M. Pendekal and S. Gupta, “An ensemble classifier based on individual features for detecting microaneurysms in diabetic retinopathy,” Indonesian Journal of Electrical Engineering and Informatics, vol. 10, no. 1, pp. 60–71, 2022.
- H. Pratt, F. Coenen, D. M. Broadbent, S. P. Harding, and Y. Zheng, “Convolutional neural networks for diabetic retinopathy,” Procedia Computer Science, vol. 90, pp. 200–205, 2016.
- C. Lam, C. Yu, L. Huang, and D. Rubin, “Retinal lesion detection with deep learning using image patches,” Investigative Ophthalmology & Visual Science, vol. 59, no. 1, pp. 590–596, 2018.
- L. Qiao, Y. Zhu, and H. Zhou, “Diabetic retinopathy detection using prognosis of microaneurysm and early diagnosis system for non-proliferative diabetic retinopathy based on deep learning algorithms,” IEEE Access, vol. 8, pp. 104 292–104 302, 2020.
- U. Birajdar, S. Gadhave, S. Chikodikar, S. Dadhich, and S. Chiwhane, “Detection and classification of diabetic retinopathy using AlexNet architecture of convolutional neural networks,” in International Conference on Computational Science and Applications. Springer, 2020, pp. 245–253.
- X. Pan, K. Jin, J. Cao, Z. Liu, and othes, “Multi-label classification of retinal lesions in diabetic retinopathy for automatic analysis of fundus fluorescein angiography based on deep learning,” Graefe’s Archive for Clinical and Experimental Ophthalmology, vol. 258, pp. 779–785, 2020.
- L. Math and R. Fatima, “Adaptive machine learning classification for diabetic retinopathy,” Multimedia Tools and Applications, vol. 80, no. 4, pp. 5173–5186, 2021.
- R. Amalia, A. Bustamam, A. R. Yudantha, and A. A. Victor, “Diabetic retinopathy detection and captioning based on lesion features using deep learning approach,” Commun. Math. Biol. Neurosci., vol. 2021:59, pp. 1–18, 2021.
- S. Rathore, A. Aswal, and P. Saranya, “Bright lesion detection in retinal fundus images for diabetic retinopathy detection using machine learning approach,” Annals of the Romanian Society for Cell Biology, pp. 4360–4367, 2021.
- M. M. Butt, D. A. Iskandar, S. E. Abdelhamid, G. Latif, and R. Alghazo, “Diabetic retinopathy detection from fundus images of the eye using hybrid deep learning features,” Diagnostics, vol. 12, no. 7, p. 1607, 2022.
- M. Berbar, “Features extraction using encoded local binary pattern for detection and grading diabetic retinopathy,” Health Information Science and Systems, vol. 10, no. 1, p. 14, 2022.
- A. S. Sathwik, R. Agarwal, S. S. Basa et al., “Diabetic retinopathy classification using deep learning,” EAI Endorsed Transactions on Pervasive Health and Technology, vol. 9, 2023.
- N. Khalifa, M. Loey, M. Taha, and H. Mohamed, “Deep transfer learning models for medical diabetic retinopathy detection,” Acta Informatica Medica, vol. 27, no. 5, p. 327, 2019.
- N. S. Shaik and T. K. Cherukuri, “Hinge attention network: A joint model for diabetic retinopathy severity grading,” Applied Intelligence, vol. 52, no. 13, pp. 15 105–15 121, 2022.
- M. Oulhadj, J. Riffi, K. Chaimae, A. Mahraz et al., “Diabetic retinopathy prediction based on deep learning and deformable registration,” Multimedia Tools and Applications, vol. 81, no. 20, pp. 28 709–28 727, 2022.
- C. Lahmar and A. Idri, “Deep hybrid architectures for diabetic retinopathy classification,” Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, vol. 11, no. 2, pp. 166–184, 2023.
- S. Abbood, H. Hamed, M. Rahim, A. Rehman, T. Saba, and S. Bahaj, “Hybrid retinal image enhancement algorithm for diabetic retinopathy diagnostic using deep learning model,” IEEE Access, vol. 10, pp. 73 079–73 086, 2022.
- M. A. I. Mahmood, N. Aktar, and M. F. Kader, “A hybrid approach for diagnosing diabetic retinopathy from fundus image exploiting deep features,” Heliyon, vol. 9, no. 9, 2023.
- N. Ullah, M. S. Khan, J. A. Khan, A. Choi, and M. S. Anwar, “A robust end-to-end deep learning-based approach for effective and reliable BTD using MR images,” Sensors, vol. 22, no. 19, p. 7575, 2022.
- B. Alatas, “Sports inspired computational intelligence algorithms for global optimization,” Artificial Intelligence Review, vol. 52, pp. 1579–1627, 2019.
- A. Gad, “Particle swarm optimization algorithm and its applications: a systematic review,” Archives of Computational Methods in Engineering, vol. 29, no. 5, pp. 2531–2561, 2022.
- V. Kumar and D. Kumar, “A systematic review on Firefly algorithm: past, present, and future,” Archives of Computational Methods in Engineering, vol. 28, pp. 3269–3291, 2021.
- H. Zamani, M. Nadimi, S. Mirjalili, F. Soleimanian, and D. Oliva, “A critical review of Moth-Flame optimization algorithm and its variants: Structural reviewing, performance evaluation, and statistical analysis,” Archives of Computational Methods in Engineering, pp. 1–49, 2024.
- M. Dorigo and T. Stützle, Ant colony optimization: overview and recent advances. Springer, 2019.
- H. Jia, H. Rao, C. Wen, and S. Mirjalili, “Cray-fish optimization algorithm,” Artificial Intelligence Review, vol. 56, no. Suppl 2, pp. 1919–1979, 2023.
- M. Dehghani, Z. Montazeri, E. Trojovská, and P. Trojovsk‘y, “Coati optimization algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems,” Knowledge-Based Systems, vol. 259, p. 110011, 2023.
- M. Dehghani, T. Pavel, and O. Malik, “Green anaconda optimization: a new bio-inspired metaheuristic algorithm for solving optimization problems,” Biomimetics, vol. 8, no. 1, p. 121, 2023.
- M. Nurmuhammed, O. Akdağ, and T. Karadağ, “Modified archimedes optimization algorithm for global optimization problems: A comparative study,” Neural Computing and Applications, vol. 36, no. 14, pp. 8007–8038, 2024.
- B. Sasmal, A. G. Hussien, A. Das, and K. G. Dhal, “A comprehensive survey on Aquila optimizer,” Archives of Computational Methods in Engineering, vol. 30, no. 7, pp. 4449–4476, 2023.
- E. Houssein, M. Saad, K. Hussain, H. Shaban, and M. Hassaballah, “A review of metaheuristic optimization algorithms in wireless sensor networks,” in Metaheuristics in Machine Learning: Theory and Applications. Springer, 2021, pp. 193–217.
- B. Antal and A. Hajdu, “Diabetic Retinopathy Debrecen,” UCI Machine Learning Repository, 2014, DOI: https://doi.org/10.24432/C5XP4P.
- D. Emma, J. Jared, and C. Will, “Diabetic retinopathy detection,” 2015. [Online]. Available: https://kaggle.com/competitions/diabetic-retinopathy-detection
- J. Cervantes, F. Garcia-Lamont, L. Rodríguez-Mazahua, and A. Lopez, “A comprehensive survey on support vector machine classification: Applications, challenges and trends,” Neuro-computing, vol. 408, pp. 189–215, 2020.
- P. Cunningham and S. J. Delany, “K-nearest neighbour classifiers-a tutorial,” ACM Computing Surveys, vol. 54, no. 6, pp. 1–25, 2021.
- D. Yazdani, J. Branke, M. N. Omidvar, X. Li, C. Li, M. Mavrovouniotis, T. T. Nguyen, S. Yang, and X. Yao, “IEEE CEC 2022 competition on dynamic optimization problems generated by generalized moving peaks benchmark,” preprint arXiv:2106.06174, 2021.
- W. Luo, X. Lin, C. Li, S. Yang, and Y. Shi, “Benchmark functions for CEC 2022 competition on seeking multiple optima in dynamic environments,” preprint arXiv:2201.00523, 2022.
- A. Taheri, K. RahimiZadeh, A. Beheshti, J. Baumbach, R. V. Rao, S. Mirjalili, and A. H. Gandomi, “Partial reinforcement optimizer: an evolutionary optimization algorithm,” Expert Systems with Applications, vol. 238, p. 122070, 2024.
- N. E. Chalabi, A. Attia, A. Bouziane, and M. Hassaballah, “An improved marine predator algorithm based on Epsilon dominance and pareto archive for multi-objective optimization,” Engineering Applications of Artificial Intelligence, vol. 119, p. 105718, 2023.