Have a personal or library account? Click to login
A Comprehensive Survey of Retrieval-Augmented Large Language Models for Decision Making in Agriculture: Unsolved Problems and Research Opportunities Cover

A Comprehensive Survey of Retrieval-Augmented Large Language Models for Decision Making in Agriculture: Unsolved Problems and Research Opportunities

Open Access
|Feb 2025

References

  1. FAOSTAT ANALYTICAL BRIEF 60: Agricultural production statistics 2000-2021. Available at: https://openknowledge.fao.org/server/api/core/bitstreams/58971ed8-c831-4ee6-ab0a-e47ea66a7e6a/content. [Accessed 01 August 2024].
  2. I. Laktionov, G. Diachenko, V. Kashtan, A. Vizniuk, V. Gorev, K. Khabarlak, Y. Shedlovska, A comprehensive review of recent approaches and Hardware-Software technologies for digitalisation and intellectualisation of Open-Field crop Production: Ukrainian case study in the global context, Computers and Electronics in Agriculture, 225, 2024, pp. 1−31. doi.org/10.1016/j.compag.2024.109326.
  3. Strategy of Agriculture and Rural development of Ukraine - 2030. Available at: https://www.agroberichtenbuitenland.nl/documenten/publicaties/2024/06/07/ua-strategy-agro-and-rural-development [Accessed 02 August 2024].
  4. Ministry of Agrarian Policy and Food of Ukraine: On Approval of the Concept of Stimulating the Development of Entrepreneur-ship in Rural Areas until 2030. Available at: https://minagro.gov.ua/npa/pro-shvalennyakoncepciyi-stimulyuvannya-rozvitkupidpriyemnictva-na-silskih-teritoriyah-do-2030-roku [Accessed 02 August 2024] (in Ukrainian).
  5. On the Sustainable Development Strategy of Ukraine until 2030. Available at: https://ips.ligazakon.net/document/JH6YF00A?an=332 [Accessed 02 August 2024] (in Ukrainian).
  6. Ministry of Digital Transformation of Ukraine: Strategy for the Development of Innovation Activities of Ukraine until 2030. Available at: https://thedigital.gov.ua/regulations/strategiyarozvitku-innovacijnoyi-diyalnosti-ukrayini-na-period-do-2030-roku%20 [Accessed 03 August 2024] (in Ukrainian).
  7. Cabinet of Ministers of Ukraine: Vectors of Economic Development 2030. Available at: https://nes2030.org.ua/docs/doc-vector.pdf [Accessed 03 August 2024] (in Ukrainian).
  8. C. Fetting, The European Green Deal, ESDN Report, Office, Vienna, December 2020. Available at: https://www.esdn.eu/fileadmin/ESDN_Reports/ESDN_Report_2_2020.pdf [Accessed 03 August 2024].
  9. Approved 28 CAP Strategic Plans (2023-2027), Summary overview for 27 Member States Facts and figures. Available at: https://agriculture.ec.europa.eu/document/download/7b3a0485-c335-4e1b-a53a-9fe3733ca48f_en?filename=approved-28-cap-strategic-plans-2023-27.pdf [Accessed 23 September 2024].
  10. EU Digital Strategy. EU4Digital. Available at: https://eufordigital.eu/discover-eu/eu-digital-strategy/ [Accessed 05 August 2024].
  11. European Commission: For a fair, healthy and environmentally-friendly food system Farm to Fork Strategy. Available at: https://food.ec.europa.eu/system/files/2020-05/f2f_action-plan_2020_strategy-info_en.pdf [Accessed 05 August 2024].
  12. FAO The role of innovation and digitalization in the sustainable use of natural resources to accelerate the implementation of climate-resilient and low-emission pathways in agrifood systems - ERC/24/2, 34th Session of the Regional Conference for Europe, Rome, Italy, 14–17 May 2024, URL: https://openknowledge.fao.org/server/api/core/bitstreams/019ae381-8546-4cce-b224-b04a761bd57e/content.
  13. Sustainable Development Goals: 17 Goals to Transform our World. United Nations. Available at: https://www.un.org/en/exhibits/page/sdgs-17-goals-transform-world [Accessed 07 August 2024].
  14. G20 Agriculture Ministers Declaration. Available at: https://www.g20.org/en/tracks/sherpa-track/agriculture [Accessed 07 August 2024].
  15. World Bank’s Digital Agriculture Initiative. Available at: https://documents1.world-bank.org/curated/en/417641615957226621/pdf/Whats-Cooking-Digital-Transformation-of-the-Agrifood-System.pdf [Accessed 07 August 2024].
  16. S.K. Routray, A. Javali, K.P. Sharmila, M.K. Jha, M. Pappa, M. Singh, Large Language Models (LLMs): Hypes and Realities, 2023 International Conference on Computer Science and Emerging Technologies (CSET), Bangalore, India, 2023, pp. 1−6, doi.org/10.1109/CSET58993.2023.10346621.
  17. H. Zhu, S. Qin, M. Su, C. Lin, A. Li, J. Gao, Harnessing Large Vision and Language Models in Agriculture: A Review. arXiv preprint arXiv:2407.19679, 2024, pp. 1−54. doi.org/10.48550/arXiv.2407.19679.
  18. Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, J. Ca, J. Kandola, T. Hofmann, T. Poggio, J. Shawe-Taylor, A Neural Probabilistic Language Model, Journal of Machine Learning Research, 3, 2003, pp. 1137–1155. URL: https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf.
  19. S. Hochreiter, J. Schmidhuber, Long Short-Term Memory Neural Computation, 9 (8), 1997, pp. 1735–1780. doi.org/10.1162/neco.1997.9.8.1735.
  20. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, Ł. Kaiser, I. Polo-sukhin, Attention Is All You Need, arXiv preprint arXiv:1706.03762, 2017, pp. 1−15. doi.org/10.48550/arXiv.1706.03762.
  21. J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, arXiv preprint arXiv:1810.04805, 2018, pp. 1−16. doi.org/10.48550/arXiv.1810.04805.
  22. A.Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D.S. Chaplot, D. de las Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier, L.R. Lavaud, M.-A. Lachaux, P. Stock, T.L. Scao, T. Lavril, T. Wang, T. Lacroix, W.E. Sayed, Mistral 7B, arXiv preprint arXiv:2310.06825, 2023, pp. 1−9. doi.org/10.48550/arXiv.2310.06825.
  23. L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, Y. Shao, W. Zhang, B. Cui, M.-H. Yang, Diffusion Models: A Comprehensive Survey of Methods and Applications, arXiv preprint arXiv:2209.00796, 2024, pp. 1−54. doi.org/10.48550/arXiv.2209.00796.
  24. M. Gupta, C. Akiri, K. Aryal, E. Parker, L. Praharaj, From ChatGPT to ThreatGPT: Impact of Generative AI in Cybersecurity and Privacy, IEEE Access, 11, 2023, pp. 80218−80245. doi.org/10.1109/ACCESS.2023.3300381.
  25. M. Zaheer, G. Guruganesh, A. Dubey, J. Ainslie, C. Alberti, S. Ontanon, P. Pham, A. Ravula, Q. Wang, L. Yang, A. Ahmed, Big Bird: Transformers for Longer Sequences, arXiv preprint arXiv:2007.14062, 2021, pp. 1−42. doi.org/10.48550/arXiv.2007.14062.
  26. S. Sayago, M. Ribera, Apple Siri (input) + Voice Over (output) = a de facto marriage, 9th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion, New York, NY, USA, 2021, pp. 6−10. doi.org/10.1145/3439231.3440603.
  27. M. Ford, W. Palmer, Alexa are you listening to me? An analysis of Alexa voice service network traffic, Pers Ubiquit Comput, 23, 2019, pp. 67–79. doi.org/10.1007/s00779-018-1174-x.
  28. M. Aggarwal, M. Madhukar, IBM’s Watson Analytics for Health Care, Cloud Computing Systems and Applications in Healthcare, 2017, pp. 117–134. doi.org/10.4018/978-1-5225-1002-4.ch007.
  29. L. Schwartz-croft, Effects of ROSS Intelligence and NDAS, highlighting the need for AI regulation, SSRN Electronic Journal, 2024. doi.org/10.2139/ssrn.4727662.
  30. A. Caines, L. Benedetto, S. Taslimipoor, C. Davis, Y. Gao, Ø. Andersen, Z. Yuan, M. Elliott, R. Moore, C. Bryant, M. Rei, H. Yannakoudakis, A. Mullooly, D. Nicholls, P. Buttery, On the application of Large Language Models for language teaching and assessment technology, arXiv preprint arXiv:2307.08393v1, 2023, pp. 1−25. doi.org/10.48550/arXiv.2307.08393.
  31. J. Su, C. Jiang, X. Jin, Y. Qiao, T. Xiao, H. Ma, R. Wei, Z. Jing, J. Xu, J. Lin, Large Language Models for Forecasting and Anomaly Detection: A Systematic Literature Review, arXiv preprint arXiv:2402.10350v1, 2024, pp. 1−56. doi.org/10.48550/arXiv.2402.10350.
  32. B. Zhang, H. Yang, X.-Y. Liu, Instruct-FinGPT: Financial Sentiment Analysis by Instruction Tuning of General-Purpose Large Language Models, arXiv preprint arXiv:2306.12659, 2023, pp. 1−7. doi.org/10.48550/arXiv.2306.12659.
  33. J.O. Krugmann, J. Hartmann, Sentiment Analysis in the Age of Generative AI, Cust. Need. and Solut, 11 (3), 2024, pp. 1−19. doi.org/10.1007/s40547-024-00143-4.
  34. J. Fields, K. Chovanec and P. Madiraju, A Survey of Text Classification With Transformers: How Wide? How Large? How Long? How Accurate? How Expensive? How Safe?, IEEE Access, 12, 2024, pp. 6518−6531. doi.org/10.1109/ACCESS.2024.3349952.
  35. L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. P. Xing, H. Zhang, J. E. Gonzalez, I. Stoica, Judging LLM-as-a-judge with MT-Bench and Chatbot Arena, arXiv preprint arXiv:2306.05685, 2023, pp. 1−29. doi.org/10.48550/arXiv.2306.05685.
  36. H. Tamoyan, H. Schuff, I. Gurevych, LLM Roleplay: Simulating Human-Chatbot Interaction, arXiv preprint arXiv:2407.03974, 2024, pp. 1−26. doi.org/10.48550/arXiv.2407.03974.
  37. S. Vakayil, D. S. Juliet, A. J and S. Vakayil, RAG-Based LLM Chatbot Using Llama-2, 2024 7th International Conference on Devices, Circuits and Systems (ICDCS), Coimbatore, India, 2024, pp. 1−5. doi.org/10.1109/ICDCS59278.2024.10561020.
  38. K. S. John, G. A. Roy and B. P. S, LLM Based 3D Avatar Assistant, 2024 1st International Conference on Trends in Engineering Systems and Technologies (ICTEST), Kochi, India, 2024, pp. 1−5. doi.org/10.1109/ICTEST60614.2024.10576146.
  39. L. Ramaul, P. Ritala, M. Ruokonen, Creational and conversational AI affordances: How the new breed of chatbots is revolutionizing knowledge industries, Business Horizons, 67 (5), 2024, pp. 615−627. doi.org/10.1016/j.bushor.2024.05.006.
  40. D. Leiker, S. Finnigan, A. R. Gyllen, M. Cukurova, Prototyping the use of Large Language Models (LLMs) for adult learning content creation at scale, arXiv preprint arXiv:2306.01815, 2023, pp. 1−5. doi.org/10.48550/arXiv.2306.01815.
  41. R. Gallotta, G. Todd, M. Zammit, S. Earle, A. Liapis, J. Togelius, G. N. Yannakakis, Large Language Models and Games: A Survey and Roadmap, IEEE Transactions on Games, 2024, pp. 1−18. doi.org/10.1109/TG.2024.3461510.
  42. D. Barman, Z. Guo, O. Conlan, The Dark Side of Language Models: Exploring the Potential of LLMs in Multimedia Disinformation Generation and Dissemination, Machine Learning with Applications, 16, 2024, pp. 1−17. doi.org/10.1016/j.mlwa.2024.100545.
  43. O. D. Okey, E. U. Udo, R. L. Rosa, D. Z. Rodríguez, J. H. Kleinschmidt, Investigating ChatGPT and cybersecurity: A perspective on topic modeling and sentiment analysis, Computers & Security, 135, 2023. doi.org/10.1016/j.cose.2023.103476.
  44. A. Zaboli, S. L. Choi, T.-J. Song, J. Hong, ChatGPT and Other Large Language Models for Cybersecurity of Smart Grid Applications, arXiv preprint arXiv:2311.05462, 2024, pp. 1−5. doi.org/10.48550/arXiv.2311.05462.
  45. M. Guastalla, Y. Li, A. Hekmati, B. Krishna-machari, Application of Large Language Models to DDoS Attack Detection. In: Chen, Y., Lin, CW., Chen, B., Zhu, Q. (eds) Security and Privacy in Cyber-Physical Systems and Smart Vehicles. SmartSP 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, Springer, Cham, 552, 2024, pp. 83−99. doi.org/10.1007/978-3-031-51630-6_6.
  46. Y. Chen, M. Cui, D. Wang, Y. Cao, P. Yang, B. Jiang, Z. Lu, B. Liu, A survey of large language models for cyber threat detection, Computers & Security, 145, 2024, pp. 104016. doi.org/10.1016/j.cose.2024.104016.
  47. N. Capodieci, C. Sanchez-Adames, J. Harris and U. Tatar, The Impact of Generative AI and LLMs on the Cybersecurity Profession, 2024 Systems and Information Engineering Design Symposium (SIEDS), Charlottesville, VA, USA, 2024, pp. 448−453. doi.org/10.1109/SIEDS61124.2024.10534674.
  48. M. A. K. Raiaan, M. S. H. Mukta, K. Fatema, N. M. Fahad, S. Sakib, M. M. J. Mim, J. Ahmad, M. E. Ali, S. Azam, A Review on Large Language Models: Architectures, Applications, Taxonomies, Open Issues and Challenges, IEEE Access, 12, 2024, pp. 26839−26874. doi.org/10.1109/ACCESS.2024.3365742.
  49. Z. Liu, Y. Tang, X. Luo, Y. Zhou, L.F. Zhang, No Need to Lift a Finger Anymore? Assessing the Quality of Code Generation by ChatGPT, IEEE Transactions on Software Engineering, 50 (6), 2024, pp. 1548−1584. doi.org/10.1109/TSE.2024.3392499.
  50. A. Onan, H. A. Alhumyani, DeepExtract: Semantic-driven extractive text summarization framework using LLMs and hierarchical positional encoding, Journal of King Saud University - Computer and Information Sciences, 36 (8), 2024, pp. 1−19. doi.org/10.1016/j.jksuci.2024.102178.
  51. P. Laban, W. Kryscinski, D. Agarwal, A. Fabbri, C. Xiong, S. Joty, C.-S. Wu, SummEd-its: Measuring LLM Ability at Factual Reasoning Through The Lens of Summarization, Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Singapore, 2023, pp. 9662−9676. doi.org/10.18653/v1/2023.emnlp-main.600.
  52. T. Zhang, F. Ladhak, E. Durmus, P. Liang, K. McKeown, T. B. Hashimoto, Benchmarking Large Language Models for News Summarization, Transactions of the Association for Computational Linguistics, 12, 2024, pp. 39−57. doi.org/10.1162/tacl_a_00632.
  53. K. Pandya, M. Holia, Automating Customer Service using LangChain: Building custom open-source GPT Chatbot for organizations, arXiv preprint arXiv:2310.05421, 2023, 1-4. doi.org/10.48550/arXiv.2310.05421.
  54. Z. Xu, M. J. Cruz, M. Guevara, T. Wang, M. Deshpande, X. Wang, Z. Li, Retrieval-Augmented Generation with Knowledge Graphs for Customer Service Question Answering, in: Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, Washington DC, USA, 2024, pp. 2905−2909. doi.org/10.1145/3626772.3661370.
  55. J. J. Bird, A. Lotfi, Customer service chatbot enhancement with attention- based transfer learning, Knowledge-Based Systems, 301, 2024, pp. 1−12. doi.org/10.1016/j.knosys.2024.112293.
  56. A. Ishtiaq, K. Munir, A. Raza, N.A. Samee, M.M. Jamjoom and Z. Ullah, Product Helpfulness Detection With Novel Transformer Based BERT Embedding and Class Probability Features, IEEE Access, 12, 2024, pp. 55905−55917. doi.org/10.1109/ACCESS.2024.3390605.
  57. Y. Mehdi, Reinventing search with a new AI-powered Microsoft Bing and Edge, your copilot for the web, The Official Microsoft Blog, Feb. 07, 2023. Available at: https://blogs.microsoft.com/blog/2023/02/07/reinventing-search-with-a-new-ai-powered-microsoft-bing-and-edge-your-copilot-for-the-web/ [Accessed 19 October 2024].
  58. Y. Li, S. Wang, H. Ding, H. Chen, Large Language Models in Finance: A Survey, in: Proceedings of the Fourth ACM International Conference on AI in Finance, ACM, Brooklyn, NY, USA, 2023, pp. 374−382. doi.org/10.1145/3604237.3626869.
  59. S. Wu, O. Irsoy, S. Lu, V. Dabravolski, M. Dredze, S. Gehrmann, P. Kambadur, D. Rosenberg, G. Mann, BloombergGPT: A Large Language Model for Finance, arXiv preprint arXiv:2303.17564, 2023, pp. 1−76. doi.org/10.48550/arXiv.2303.17564.
  60. Q. Xie, W. Han, X. Zhang, Y. Lai, M. Peng, A. Lopez-Lira, J. Huang, PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark for Finance, arXiv preprint arXiv:2306.05443, 2023, pp. 1−12. doi.org/10.48550/arXiv.2306.05443.
  61. M. S. Khan, H. Umer, ChatGPT in finance: Applications, challenges, and solutions, Heliyon, 10(2), 2024, pp. 1−8. doi.org/10.1016/j.heliyon.2024.e24890.
  62. How JPMorgan Chase’s COIN is Revolutionizing Financial Operations with AI, Medium, Available at: https://medium.com/@the_AI_ZONE/howjpmorgan-chases-coin-is-revolutionizingfinancial-operations-with-ai-120a2938dab7 [Accessed 19 October 2024].
  63. A.J. Thirunavukarasu, D.S.J. Ting, K. Elangovan, L. Gutierrez, T.F. Tan, D.S.W. Ting, Large language models in medicine. Nat Med, 29, 2023, pp. 1930–1940. doi.org/10.1038/s41591-023-02448-8.
  64. M. Sallam, ChatGPT Utility in Healthcare Education, Research, and Practice: Systematic Review on the Promising Perspectives and Valid Concerns, Healthcare, 11 (6), 2023, pp. 1−20. doi.org/10.3390/healthcare11060887.
  65. M. Cascella, J. Montomoli, V. Bellini et al., Evaluating the Feasibility of ChatGPT in Healthcare: An Analysis of Multiple Clinical and Research Scenarios, J. Med. Syst., 47 (33), 2023, pp. 1−5. doi.org/10.1007/s10916-023-01925-4.
  66. S. Pashangpour, G. Nejat, The Future of Intelligent Healthcare: A Systematic Analysis and Discussion on the Integration and Impact of Robots Using Large Language Models for Healthcare, Robotics, 13 (8), 2024, pp. 1−43. doi.org/10.3390/robotics13080112.
  67. C. Peng, X. Yang, A. Chen et al., A study of generative large language model for medical research and healthcare, npj Digit. Med., 6 (210), 2023, pp. 1−10. doi.org/10.1038/s41746-023-00958-w.
  68. X. Wu, B. Zhang, ChatGPT promotes health-care: current applications and potential challenges, Int. J. Surg., 110 (1), 2024, pp. 606–608. doi.org/10.1097/JS9.0000000000000802.
  69. Med-PaLM. Available at: https://sites.research.google/med-palm [Accessed 02 August 2024].
  70. L. Martin, N. Whitehouse, S. Yiu, L. Catterson, R. Perera, Better Call GPT: Comparing Large Language Models Against Lawyers, arXiv preprint arXiv:2401.16212, 2024, p. 1-16. doi.org/10.48550/arXiv.2401.16212
  71. W. Han et al., Human-Centered and AI-Empowered Machine to Enhance Court Productivity and Legal Assistance, Information Sciences, 2024, pp. 121052−121052. doi.org/10.1016/j.ins.2024.121052
  72. P. Sarzaeim, Q. H. Mahmoud, A. Azim, A Framework for LLM-Assisted Smart Policing System, IEEE Access, 12, 2024, pp. 74915–74929. doi.org/10.1109/ACCESS.2024.3404862
  73. I.C. Peláez-Sánchez, D. Velarde-Camaqui, L.D. Glasserman-Morales, The Impact of Large Language Models on Higher Education: Exploring the Connection Between AI and Education 4.0, Front. Educ., 9, 2024, pp. 1−21. doi.org/10.3389/feduc.2024.1392091
  74. E. Waisberg, J. Ong, M. Masalkhi, A.G. Lee, Large Language Model (LLM)-Driven Chatbots for Neuro-Ophthalmic Medical Education, Eye, 38, 2024, pp. 639–641. doi.org/10.1038/s41433-023-02759-7
  75. J. Jeon, S. Lee, Large Language Models in Education: A Focus on the Complementary Relationship Between Human Teachers and ChatGPT, Educ Inf Technol, 28, 2023, pp. 15873–15892. doi.org/10.1007/s10639-023-11834-1
  76. M. Hosseini, C.A. Gao, D.M. Liebovitz, A.M. Carvalho, F.S. Ahmad, Y. Luo, N. Mac-Donald, K.L. Holmes, A. Kho, An Exploratory Survey About Using ChatGPT in Education, Healthcare, and Research, PLoS ONE, 18 (10), 2023, pp. 1−14. doi.org/10.1371/journal.pone.0292216.
  77. B. Alsafari, E. Atwell, A. Walker, M. Callaghan, Towards Effective Teaching Assistants: From Intent-Based Chat-bots to LLM-Powered Teaching Assistants, Natural Language Processing Journal, 2024, pp. 100101−100101. doi.org/10.1016/j.nlp.2024.100101.
  78. Z. Epstein, A. Hertzmann, Art and the Science of Generative AI, Science, 380, 2023, pp.1110–1111. doi.org/10.1126/science.adh4451.
  79. J. Tsao, C. Nogues, Beyond the Author: Artificial Intelligence, Creative Writing and Intellectual Emancipation, Poetics, 102, 2024, pp. 1−12. doi.org/10.1016/j.poetic.2024.101865.
  80. S. Zhu, Z. Wang, Y. Zhuang, Y. Jiang, M. Guo, X. Zhang, Z. Gao, Exploring the Impact of ChatGPT on Art Creation and Collaboration: Benefits, Challenges and Ethical Implications, Telematics and Informatics Reports, 14, 2024, pp. 100138−100138. doi.org/10.1016/j.teler.2024.100138.
  81. C. Gan, Q. Zhang, T. Mori, Application of LLM Agents in Recruitment: A Novel Framework for Resume Screening, arXiv preprint arXiv:2401.08315, 2024, pp. 1−18. doi.org/10.48550/arXiv.2401.08315.
  82. R. J. Sunico, S. Pachchigar, V. Kumar, I. Shah, J. Wang, I. Song, Resume Building Application based on LLM (Large Language Model), 2023 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), Greater Noida, India, 2023, pp. 486−492. doi.org/10.1109/ICCCIS60361. 2023.10425602.
  83. G. Vagale, S. Y. Bhat, P. P. P. Dharishini, P. GK, ProspectCV: LLM-Based Advanced CV-JD Evaluation Platform, 2024 IEEE Students Conference on Engineering and Systems (SCES), Prayagraj, India, 2024, pp. 1−6. doi.org/10.1109/SCES61914.2024.10652548.
  84. S. Vijayakumar, F. Louis, Revolutionizing Staffing and Recruiting with Contextual Knowledge Graphs and QNLP: An End-to-End Quantum Training Paradigm, 2023 IEEE International Conference on Knowledge Graph (ICKG), Shanghai, China, 2023, pp. 45−51. doi.org/10.1109/ICKG59574.2023.00011.
  85. D. Gao, K. Chen, B. Chen, H. Dai, L. Jin, W. Jiang, W. Ning, S. Yu, Q. Xuan, X. Cai, L. Yang, Z. Wang, LLMs-based Machine Translation for E-commerce, Expert Systems with Applications, 258, 2024, pp. 125087−125087. doi.org/10.1016/j.eswa.2024.125087.
  86. K. I. Roumeliotis, N. D. Tselikas, D. K. Nasiopoulos, LLMs in E-commerce: A Comparative Analysis of GPT and LLaMA Models in Product Review Evaluation, Natural Language Processing Journal, 6, 2024, pp. 1−15. doi.org/10.1016/j.nlp.2024.100056.
  87. A. Mari, A. Mandelli, R. Algesheimer, Empathic Voice Assistants: Enhancing Consumer Responses in Voice Commerce, Journal of Business Research, 175, 2024, pp. 114566−114566. doi.org/10.1016/j.jbusres.2024.114566.
  88. A. Sharma et al., Automatic Data Transformation Using Large Language Model - An Experimental Study on Building Energy Data, 2023 IEEE International Conference on Big Data (BigData), Sorrento, Italy, 2023, pp. 1824−1834. doi.org/10.1109/BigData59044. 2023.10386931.
  89. S. Majumder, L. Dong, F. Doudi, Y. Cai, C. Tian, D. Kalathil, K. Ding, A. A. Thatte, N. Li, L. Xie, Exploring the Capabilities and Limitations of Large Language Models in the Electric Energy Sector, Joule, 8 (6), 2024, pp. 1544−1549. doi.org/10.1016/j.joule.2024.05.009.
  90. G. Jiang, Z. Ma, L. Zhang, J. Chen, EPlus-LLM: A Large Language Model-Based Computing Platform for Automated Building Energy Modeling, Applied Energy, 367, 2024, pp. 123431−123431. doi.org/10.1016/j.apenergy.2024.123431.
  91. J. Lu, X. Tian, C. Zhang, Y. Zhao, J. Zhang, W. Zhang, C. Feng, J. He, J. Wang, F. He, Evaluation of Large Language Models (LLMs) on the Mastery of Knowledge and Skills in the Heating, Ventilation and Air Conditioning (HVAC) Industry, Energy and Built Environment, 2024, pp. 1−18. doi.org/10.1016/j.enbenv.2024.03.010.
  92. N. Rane, A. Tawde, S. Choudhary, J. Rane, Contribution and Performance of Chat-GPT and Other Large Language Models (LLM) for Scientific and Research Advancements: A Double-Edged Sword, International Research Journal of Modern Engineering and Technology, 5, 2023, pp. 875−899. doi.org/10.56726/IRJMETS45312.
  93. S. Jiang, D. Evans-Yamamoto, D. Bersenev, S. K. Palaniappan, A. Yachie-Kinoshita, ProtoCode: Leveraging Large Language Models (LLMs) for Automated Generation of Machine-Readable PCR Protocols from Scientific Publications, SLAS Technology, 29 (3), 2024, pp. 1−6. doi.org/10.1016/j.slast.2024.100134.
  94. T.A. Mohamed, M.H. Khafgy, A.B. Elsedawy, A.S. Ismail, A Proposed Model for Distinguishing Between Human-Based and ChatGPT Content in Scientific Articles, IEEE Access, 12, 2024, pp. 121251−121260. doi.org/10.1109/ACCESS.2024.3448315.
  95. B. Wang, X. Zhang, S. Li, Y. Wang, The Practice of Enhancing Learning and Scientific Innovative Abilities Using LLM-Based AI Tools, 2024 6th International Conference on Computer Science and Technologies in Education (CSTE), Xi’an, China, 2024, pp. 166−170. doi.org/10.1109/CSTE62025.2024.00038.
  96. B. Silva, L. Nunes, R. Estevão, V. Aski, R. Chandra, GPT-4 as an Agronomist Assistant? Answering Agriculture Exams Using Large Language Models, arXiv preprint arXiv:2310.06225, 2023, pp. 1−15. doi.org/10.48550/arXiv.2310.06225.
  97. R. Peng, K. Liu, P. Yang, Z. Yuan, S. Li, Embedding-Based Retrieval with LLM for Effective Agriculture Information Extracting from Unstructured Data, arXiv preprint arXiv:2308.03107, 2023, pp. 1−6. doi.org/10.48550/arXiv.2308.03107.
  98. G. Lu, S. Li, G. Mai, J. Sun, D. Zhu, L. Chai, H. Sun, X. Wang, H. Dai, N. Liu, R. Xu, D. Petti, C. Li, T. Liu, AGI for Agriculture, arXiv preprint arXiv:2304.06136, 2023, pp. 1−18. doi.org/10.48550/arXiv.2304.06136.
  99. X. Zhao, B. Chen, M. Ji, X. Wang, Y. Yan, J. Zhang, S. Liu, M. Ye, C. Lv, Implementation of Large Language Models and Agricultural Knowledge Graphs for Efficient Plant Disease Detection, Agriculture, 14 (8), 2024, pp. 1–24. doi.org/10.3390/agriculture14081359.
  100. P. Yu, B. Lin, A Framework for Agricultural Intelligent Analysis Based on a Visual Language Large Model, Applied Sciences, 14 (18), 2024, pp. 1–15. doi.org/10.3390/app14188350.
  101. M. Trzcinski, S. Łukasik, A.H. Gandomi, Optimizing the Structures of Transformer Neural Networks Using Parallel Simulated Annealing, JAISCR, 14 (3), 2024, pp. 267–282. doi.org/10.2478/jaiscr-2024-0015.
  102. W. Fan, Y. Ding, L. Ning, S. Wang, H. Li, D. Yin, T.-S. Chua, Q. Li, A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models, arXiv preprint arXiv:2405.06211, 2024, pp. 1−18. doi.org/10.48550/arXiv.2405.06211.
  103. Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun, M. Wang, H. Wang, Retrieval-Augmented Generation for Large Language Models: A Survey, arXiv preprint arXiv:2312.10997, 2024, pp. 1−21. doi.org/10.48550/arXiv.2312.10997.
  104. X. Chen, S. Wiseman, BM25 Query Augmentation Learned End-to-End, arXiv preprint arXiv:2305.14087, 2023, pp. 1−6. doi.org/10.48550/arXiv.2305.14087.
  105. T. Formal, C. Lassance, B. Piwowarski, S. Clinchant, SPLADE v2: Sparse Lexical and Expansion Model for Information Retrieval, arXiv preprint arXiv:2109.10086, 2021, pp. 1−6. doi.org/10.48550/arXiv.2109.10086.
  106. J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, arXiv preprint arXiv:1810.04805, 2019, pp. 1−16. doi.org/10.48550/arXiv.1810.04805.
  107. L. Wang, N. Yang, F. Wei, Query2doc: Query Expansion with Large Language Models, arXiv preprint arXiv:2303.07678, 2023, pp. 1−10. doi.org/10.48550/arXiv.2303.07678.
  108. X. Ma, Y. Gong, P. He, H. Zhao, N. Duan, Query Rewriting for Retrieval-Augmented Large Language Models, arXiv preprint arXiv:2305.14283, 2023, pp. 1−13. doi.org/10.48550/arXiv.2305.14283.
  109. G. V. Cormack, C. L. A. Clarke, S. Buettcher, Reciprocal Rank Fusion Outperforms Condorcet and Individual Rank Learning Methods, in Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Association for Computing Machinery, New York, NY, USA, 2009, pp. 758–759. doi.org/10.1145/1571941.1572114.
  110. P. Sahoo, A. K. Singh, S. Saha, V. Jain, S. Mondal, A. Chadha, A Systematic Survey of Prompt Engineering in Large Language Models: Techniques and Applications, arXiv preprint arXiv:2402.07927, 2024, pp. 1−9. doi.org/10.48550/arXiv.2402.07927.
  111. RAG in Production: Deployment Strategies and Practical Considerations. Available at: https://www.aporia.com/learn/ragin-production/ [Accessed 18 November 2024].
  112. OpenAI Platform: Function calling. Available at: https://platform.openai.com/docs/guides/function-calling [Accessed 30 August 2024].
  113. E. Eigner, T. Händler, Determinants of LLM-assisted Decision-Making, arXiv preprint arXiv:2402.17385, 2024, pp. 1−44. doi.org/10.48550/arXiv.2402.17385.
  114. J. Pawłowska, K. Rydzewska, A. Wierzbicki, Using Cognitive Models to Understand and Counteract the Effect of Self-Induced Bias on Recommendation Algorithms, JAISCR, 13 (2), 2023, pp. 73−94. doi.org/10.2478/jaiscr-2023-0008.
  115. H. Chatoui, O. Ata, Automated Evaluation of the Virtual Assistant in BLEU and ROUGE Scores, Proceedings of the 2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), 2021, pp. 1–6. doi.org/10.1109/HORA52670.2021.9461351.
  116. H. Yu, A. Gan, K. Zhang, S. Tong, Q. Liu, Z. Liu, Evaluation of Retrieval-Augmented Generation: A Survey, arXiv preprint arXiv:2405.07437, 2024, pp. 1−21. doi.org/10.48550/arXiv.2405.07437.
  117. E. Elbasi, N. Mostafa, C. Zaki, Z. AlAr-naout, A. E. Topcu, L. Saker, Optimizing Agricultural Data Analysis Techniques through AI-Powered Decision-Making Processes, Applied Sciences, 14 (17), 2024, pp. 1−26. doi.org/10.3390/app14178018.
  118. M. Mirali, Generative AI and Agriculture: A New Era of Farming Efficiency, Grain Data Solutions Inc., 2024. Available at: https://graindatasolutions.com/generative-ai-agriculture-farming-efficiency/ [Accessed 23 November 2024].
  119. M. A. Hamed, M. F. El-Habib, R. Z. Sababa, M. M. Al-Hanjor, B. S. Abunasser, S. S. Abu-Naser, Artificial Intelligence in Agriculture: Enhancing Productivity and Sustainability, International Journal of Engineering and Information Systems (IJEAIS), 8 (8), 2024, pp. 1–8. URL: https://philarchive.org/archive/HAMAII-2.
  120. D. R. Kale, J. Nalvade, P. S. Ran-dive, S. Hirve, Artificial Intelligence in Sustainable Agriculture: Enhancing Efficiency and Reducing Environmental Impact, Industrial Engineering Journal, 53 (9), 2024, pp. 103−109. URL: https://www.researchgate.net/publication/382949284_Artificial_Intelligence_In_Sustainable_Agriculture_Enhancing_Efficiency_and_Reducing_Environmental_Impact
  121. D. Tirkey, K. K. Singh, S. Tripathi, Performance analysis of AI-based solutions for crop disease identification, detection, and classification, Smart Agricultural Technology, 5, 2023, pp. 1−13. doi.org/10.1016/j.atech.2023.100238.
  122. A. Sarangi, S. K. Raula, S. Ghoshal, S. Kumar, C. S. Kumar, N. Padhy, Enhancing Process Control in Agriculture: Leveraging Machine Learning for Soil Fertility Assessment, Engineering Proceedings, 67 (1), 2024, pp. 1−11. doi.org/10.3390/engproc2024067031.
  123. W. Geng, L. Liu, J. Zhao, X. Kang, W. Wang, Digital Technologies Adoption and Economic Benefits in Agriculture: A Mixed-Methods Approach, Sustainability, 16 (11), 2024, pp. 1−24. doi.org/10.3390/su16114431.
  124. V. Varriale, A. Cammarano, F. Michelino, M. Caputo, Critical analysis of the impact of artificial intelligence integration with cutting-edge technologies for production systems, Journal of Intelligent Manufacturing, 2023, pp. 1−33. doi.org/10.1007/s10845-023-02244-8.
  125. Y. Qin, Z. Xu, X. Wang, M. Skare, Artificial Intelligence and Economic Development: An Evolutionary Investigation and Systematic Review, Journal of the Knowledge Economy, 15 (1), 2024, pp. 1736–1770. doi.org/10.1007/s13132-023-01183-2.
  126. A. Balaguer, V. Benara, R. L. de Freitas Cunha, R. de M. Estevão Filho, T. Hendry, D. Holstein, J. Marsman, N. Mecklenburg, S. Malvar, L. O. Nunes, R. Padilha, M. Sharp, B. Silva, S. Sharma, V. Aski, R. Chandra, RAG vs Fine-tuning: Pipelines, Trade-offs, and a Case Study on Agriculture, arXiv preprint arXiv:2401.08406, 2024, pp. 1−33. doi.org/10.48550/arXiv.2401.08406.
  127. J. Benzinho, J. Ferreira, J. Batista, L. Pereira, M. Maximiano, V. Távora, R. Gomes, O. Remédios, LLM Based Chatbot for Farm-to-Fork Blockchain Traceability Platform, Applied Sciences, 14 (19), 2024, pp. 1−15. doi.org/10.3390/app14198856.
  128. R. Jagerman, H. Zhuang, Z. Qin, X. Wang, M. Bendersky, Query Expansion by Prompting Large Language Models, arXiv preprint arXiv:2305.03653, 2023, pp. 1−7. doi.org/10.48550/arXiv.2305.03653.
  129. B. Nouriinanloo, M. Lamothe, Re-Ranking Step by Step: Investigating Pre-Filtering for Re-Ranking with Large Language Models, arXiv preprint arXiv:2406.18740, 2024, pp. 1−10. doi.org/10.48550/arXiv.2406.18740.
  130. R. Mohandoss, Context-based Semantic Caching for LLM Applications, 2024 IEEE Conference on Artificial Intelligence (CAI), Singapore, Singapore, 2024, pp. 371−376. doi.org/10.1109/CAI59869.2024.00075.
  131. Recursively split by character. LangChain. Available at: https://python.langchain.com/v0.1/docs/modules/data_connection/document_transformers/recursive_text_splitter/ [Accessed 31 August 2024].
  132. Y. Wang, N. Lipka, R.A. Rossi, A. Siu, R. Zhang, T. Derr, Knowledge Graph Prompting for Multi-Document Question Answering, arXiv preprint arXiv:2308.11730, 2023, pp. 1−22. doi.org/10.48550/arXiv.2308.11730.
  133. Cohere: Rerank Overview. Available at: https://docs.cohere.com/docs/overview [Accessed 30 August 2024].
  134. Voyage AI: Rerankers. Available at: https://docs.voyageai.com/docs/reranker [Accessed 30 August 2024].
  135. W. Sun, L. Yan, X. Ma, S. Wang, P. Ren, Z. Chen, D. Yin, Z. Ren, Is ChatGPT Good at Search? Investigating Large Language Models as Re-Ranking Agents, arXiv preprint arXiv:2304.09542, 2023, pp. 1−20. doi.org/10.48550/arXiv.2304.09542.
  136. J.-j. Park, S.-j. Choi, LLMs for Enhanced Agricultural Meteorological Recommendations, arXiv preprint arXiv:2408.04640, 2024, pp. 1−10. doi.org/10.48550/arXiv.2408.04640.
  137. T. Wang, N. Wang, Y. Cui, J. Liu. Agricultural Technology Knowledge Intelligent Question-Answering System Based on Large Language Model, Smart Agriculture, 5 (4), 2023, pp. 105−116. doi.org/10.12133/j.smartag.SA202311005.
  138. X. V. Lin, X. Chen, M. Chen, W. Shi, M. Lomeli, R. James, P. Rodriguez, J. Kahn, G. Szilvasy, M. Lewis, L. Zettlemoyer, S. Yih, RADIT: Retrieval-Augmented Dual Instruction Tuning, arXiv preprint arXiv:2310.01352, 2024, pp. 1−25. doi.org/10.48550/arXiv.2310.01352
  139. Q. Ye, H. Xu, G. Xu, J. Ye, M. Yan, Y. Zhou, J. Wang, A. Hu, P. Shi, Y. Shi, C. Li, Y. Xu, H. Chen, J. Tian, Q. Qian, J. Zhang, F. Huang, J. Zhou, mPLUG-Owl: Modularization Empowers Large Language Models with Multimodality, arXiv preprint arXiv:2304.14178, 2024, pp. 1−21. doi.org/10.48550/arXiv.2304.14178.
  140. P. Qi, Movie Visual and Speech Analysis Through Multi-Modal LLM for Recommendation Systems, IEEE Access, 12, 2024, pp. 145686−145702. doi.org/10.1109/ACCESS.2024.3471568.
  141. L. Chen, L. Wang, H. Dong, Y. Du, J. Yan, F. Yang, S. Li, P. Zhao, S. Qin, S. Rajmohan, Q. Lin, D. Zhang, Introspective Tips: Large Language Model for In-Context Decision Making, arXiv preprint arXiv:2305.11598, 2023, pp. 1−22. doi.org/10.48550/arXiv.2305.11598.
  142. M. Chen, Z. Tao, W. Tang, T. Qin, R. Yang, C. Zhu, Enhancing emergency decision-making with knowledge graphs and large language models, International Journal of Disaster Risk Reduction, 113, 2024, pp. 104804. doi.org/10.1016/j.ijdrr.2024.104804.
  143. D. De Clercq, E. Nehring, H. Mayne, A. Mahdi, Large language models can help boost food production, but be mindful of their risks, Frontiers in Artificial Intelligence, 7, 2024, pp. 1−11. doi.org/10.3389/frai.2024.1326153.
  144. K. Gikunda, Harnessing Artificial Intelligence for Sustainable Agricultural Development in Africa: Opportunities, Challenges, and Impact, arXiv preprint arXiv:2401.06171, 2024, pp. 1−8. doi.org/10.48550/arXiv.2401.06171.
  145. M. Gardezi, B. Joshi, D. M. Rizzo, M. Ryan, E. Prutzer, S. Brugler, A. Dadkhah, Artificial Intelligence in Farming: Challenges and Opportunities for Building Trust, Agronomy Journal, 116 (3), 2024, pp. 1217−1228. doi.org/10.1002/agj2.21353.
  146. S. Kumar S, A. K. M. Ajmal Khan, I. A. Banday, M. Gada, V. V. Shanbhag, Overcoming LLM Challenges Using RAG-Driven Precision in Coffee Leaf Disease Remediation, arXiv preprint arXiv:2405.01310, 2024, pp. 1−6. doi.org/10.48550/arXiv.2405.01310.
  147. J. Li, M. Xu, L. Xiang, D. Chen, W. Zhuang, X. Yin, Z. Li, Large Language Models and Foundation Models in Smart Agriculture: Basics, Opportunities, and Challenges, arXiv preprint arXiv:2308.06668, 2024, pp. 1−18. doi.org/10.48550/arXiv.2308.06668.
  148. A. Mishra, A. Asai, V. Balachandran, Y. Wang, G. Neubig, Y. Tsvetkov, H. Hajishirzi, Fine-grained Hallucination Detection and Editing for Language Models, arXiv preprint arXiv:2401.06855, 2024, pp. 1−23. doi.org/10.48550/arXiv.2401.06855.
  149. G. Perković, A. Drobnjak, I. Botički, Hallucinations in LLMs: Understanding and Addressing Challenges, in Proceedings of the 2024 47th MIPRO ICT and Electronics Convention, 2024, pp. 2084−2088. doi.org/10.1109/MIPRO60963.2024.10569238.
  150. W. de Almeida da Silva, L. C. Costa Fonseca, S. Labidi, J. C. Lima Pacheco, Mitigation of Hallucinations in Language Models in Education: A New Approach of Comparative and Cross-Verification, in Proceedings of the 2024 IEEE International Conference on Advanced Learning Technologies (ICALT), 2024, pp. 207−209. doi.org/10.1109/ICALT61570.2024.00066.
  151. R. Mark, Ethics of Using AI and Big Data in Agriculture: The Case of a Large Agriculture Multinational, The ORBIT Journal, 2 (2), 2019, pp. 1−27. doi.org/10.29297/orbit.v2i2.109.
  152. P. B. Falola, A. E. Adeniyi, O. A. Madamidola, J. B. Awotunde, O. A. Olukiran, S. O. Akinola, Artificial Intelligence in Agriculture: The Potential for Efficiency and Sustainability, With Ethical Considerations. In H. Kannan, R. Rodriguez, Z. Paprika, & A. Ade-Ibijola (Eds.), Exploring Ethical Dimensions of Environmental Sustainability and Use of AI, IGI Global Scientific Publishing, 2024, pp. 307−329. doi.org/10.4018/979-8-3693-0892-9.ch015.
  153. P. Karkhile, V. Kavade, P. Bahalkar, Use of Ethical AI in Agriculture, International Journal for Multidisciplinary Research (IJFMR), 6 (3), 2024, pp. 1−12. URL: https://www.ijfmr.com/papers/2024/3/20356.pdf.
  154. M. Uddin, A. Chowdhury, M. A. Kabir, Legal and ethical aspects of deploying artificial intelligence in climate-smart agriculture, AI & Society, 39 (1), 2024, pp. 221−234. doi:10.1007/s00146-022-01421-2.
  155. B. Kisliuk, J. C. Krause, H. Meemken, J. C. Saborío Morales, H. Müller, J. Hertzberg, AI in Current and Future Agriculture: An Introductory Overview, KI - Künstliche Intelligenz, 37 (2), 2023, pp. 117−132. doi:10.1007/s13218-023-00826-5.
  156. F. Assimakopoulos, C. Vassilakis, D. Margaris, K. Kotis, D. Spiliotopoulos, Artificial Intelligence Tools for the Agriculture Value Chain: Status and Prospects, Electronics, 13 (22), 2024, pp. 1−36. doi:10.3390/electronics13224362.
  157. O. B. Akintuyi, AI in Agriculture: A Comparative Review of Developments in the USA and Africa, Open Access Research Journal of Science and Technology, 10 (2), 2024, pp. 60–70. doi.org/10.53022/oarjst.2024.10.2.0051.
Language: English
Page range: 115 - 146
Submitted on: Sep 9, 2024
Accepted on: Dec 1, 2024
Published on: Feb 5, 2025
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Artem Vizniuk, Grygorii Diachenko, Ivan Laktionov, Agnieszka Siwocha, Min Xiao, Jacek Smoląg, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.