Have a personal or library account? Click to login
Remaining Useful Life Prediction with Uncertainty Quantification Using Evidential Deep Learning Cover

Remaining Useful Life Prediction with Uncertainty Quantification Using Evidential Deep Learning

Open Access
|Dec 2024

References

  1. Hong-feng, W. (2012). Prognostics and Health Management for Complex system Based on Fusion of Model-based approach and Data-driven approach. Physics Procedia, 24, 828-831.
  2. Aydemir, G., & Acar, B. (2020). Anomaly monitoring improves remaining useful life estimation of industrial machinery. Journal of Manufacturing Systems, 56, 463-469.
  3. Sankararaman, S. (2015). Significance, interpretation, and quantification of uncertainty in prognostics and remaining useful life prediction. Mechanical Systems and Signal Processing, 52, 228-247.
  4. Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
  5. Dempster, A. P. (1967). Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 325–339.
  6. Shafer, G. (1976). A mathematical theory of evidence (Vol. 42). Princeton university press.
  7. Amini, A., Schwarting, W., Soleimany, A., & Rus, D. (2020). Deep evidential regression. Advances in Neural Information Processing Systems, 33, 14927-14937.
  8. Frederick, D. K., DeCastro, J. A., & Litt, J. S. (2007). User’s guide for the commercial modular aero-propulsion system simulation (C-MAPSS) (No. E-16205).
  9. Saxena, A., Goebel, K., Simon, D., & Eklund, N. (2008). Damage Propagation Modeling for Aircraft Engine Run-to-Failure Simulation. In Proceedings of the International Conference on Prognostics and Health Management, 1–9.
  10. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
  11. Wang, Z., Liu, N., & Guo, Y. (2021). Adaptive sliding window LSTM NN based RUL prediction for lithium-ion batteries integrating LTSA feature reconstruction. Neurocomputing, 466, 178-189.
  12. Zhao, B., & Yuan, Q. (2021). A novel deep learning scheme for multi-condition remaining useful life prediction of rolling element bearings. Journal of Manufacturing Systems, 61, 450-460.
  13. Liu, K., Shang, Y., Ouyang, Q., & Widanage, W. D. (2020). A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery. IEEE Transactions on Industrial Electronics, 68(4), 3170-3180.
  14. Gou, B., Xu, Y., & Feng, X. (2020). State-of-health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method. IEEE Transactions on Vehicular Technology, 69(10), 10854-10867.
  15. Zhang, Y., Xiong, R., He, H., & Pecht, M. G. (2018). Lithium-ion battery remaining useful life prediction with Box–Cox transformation and Monte Carlo simulation. IEEE Transactions on Industrial Electronics, 66(2), 1585-1597.
  16. Sateesh Babu, G., Zhao, P., & Li, X. L. (2016). Deep convolutional neural network based regression approach for estimation of remaining useful life. In Database Systems for Advanced Applications: 21st International Conference, DASFAA 2016, Dallas, TX, USA, April 16-19, 2016, Proceedings, Part I 21 (pp. 214-228). Springer International Publishing.
  17. Wen, L., Dong, Y., & Gao, L. (2019). A new ensemble residual convolutional neural network for remaining useful life estimation. Math. Biosci. Eng, 16(2), 862-880.
  18. Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2020). A survey of the recent architectures of deep convolutional neural networks. Artificial intelligence review, 53, 5455-5516.
  19. Li, J., Li, X., & He, D. (2019). A directed acyclic graph network combined with CNN and LSTM for remaining useful life prediction. IEEE Access, 7, 75464-75475.
  20. Muneer, A., Taib, S. M., Fati, S. M., & Alhus-sian, H. (2021). Deep-learning based prognosis approach for remaining useful life prediction of turbofan engine. Symmetry, 13(10), 1861.
  21. Zhang, C., Lim, P., Qin, A. K., & Tan, K. C. (2016). Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics. IEEE transactions on neural networks and learning systems, 28(10), 2306-2318.
  22. Gugulothu, N., Tv, V., Malhotra, P., Vig, L., Agarwal, P., & Shroff, G. (2017). Predicting remaining useful life using time series embeddings based on recurrent neural networks. arXiv preprint arXiv:1709.01073.
  23. Soualhi, M., Nguyen, K. T., Medjaher, K., Nejjari, F., Puig, V., Blesa, J., & Marlasca, F. (2023). Dealing with prognostics uncertainties: Combination of direct and recursive remaining useful life estimations. Computers in Industry, 144, 103766.
  24. Chang, Y., Zou, J., Fan, S., Peng, C., & Fang, H. (2022). Remaining useful life prediction of degraded system with the capability of uncertainty management. Mechanical Systems and Signal Processing, 177, 109166.
  25. Prabhakar, S., & Cheng, C. K. (2009). Data uncertainty management in sensor networks. Encyclopedia of Database Systems.
  26. Gal, Y., & Ghahramani, Z. (2016, June). Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In international conference on machine learning (pp. 1050-1059). PMLR.
  27. Postels, J., Ferroni, F., Coskun, H., Navab, N., & Tombari, F. (2019). Sampling-free epistemic uncertainty estimation using approximated variance propagation. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 2931-2940).
  28. Geifman, Y., Uziel, G., & El-Yaniv, R. (2018). Bias-reduced uncertainty estimation for deep neural classifiers. arXiv preprint arXiv:1805.08206.
  29. Denœux, T. (2019). Logistic regression, neural networks and Dempster–Shafer theory: A new perspective. Knowledge-Based Systems, 176, 54-67.
  30. Sensoy, M., Kaplan, L., & Kandemir, M. (2018). Evidential deep learning to quantify classification uncertainty. Advances in neural information processing systems, 31.
  31. Lorieul, T. (2020). Uncertainty in predictions of deep learning models for fine-grained classification (Doctoral dissertation, Université Montpellier).
  32. MacKay, D. J. (1995). Bayesian neural networks and density networks. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 354(1), 73-80.
  33. Mendes-Moreira, J., Soares, C., Jorge, A. M., & Sousa, J. F. D. (2012). Ensemble approaches for regression: A survey. Acm computing surveys (csur), 45(1), 1-40.
  34. Parisi, G., & Shankar, R. (1988). Statistical field theory.
  35. Jiang, Ke, Brian Kulis, and Michael Jordan. “Small-variance asymptotics for exponential family Dirichlet process mixture models.” Advances in Neural Information Processing Systems 25 (2012).
Language: English
Page range: 37 - 55
Submitted on: Jun 25, 2024
Accepted on: Sep 28, 2024
Published on: Dec 8, 2024
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Safa Ben Ayed, Roozbeh Sadeghian Broujeny, Rachid Tahar Hamza, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.