References
- Viola, P., Jones, M., Rapid object detection using a boosted cascade of simple features., Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition, 2001, 511-518.
- Dalal, N., Triggs, B., Histograms of oriented gradients for human detection., IEEE computer society conference on computer vision and pattern recognition, 2005, 886-893.
- He, K., Zhang, X., Ren, S., Sun, J., Deep residual learning for image recognition., Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, 770-778.
- Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K., Aggregated residual transformations for deep neural networks., Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, 1492-1500.
- Ren, S., He, K., Girshick, R., Sun, J., Faster r-cnn: Towards real-time object detection with region proposal networks., Advances in neural information processing systems, 2015.
- Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S., Feature pyramid networks for object detection., Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, 2117-2125.
- Lin, T. Y., Goyal, P., Girshick, R., He, K., Dollár, P., Focal loss for dense object detection., Proceedings of the IEEE international conference on computer vision, 2017, 2980-2988.
- Tian, Z., Shen, C., Chen, H., He, T., FCOS: A simple and strong anchor-free object detector., IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 1922-1933.
- Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S., End-to-end object detection with transformers., European conference on computer vision, 2020, 213-229.
- Tao, M., Li, X., Ota, K., Dong, M., Single-Cell Multiuser Computation Offloading in Dynamic Pricing-Aided Mobile Edge Computing., IEEE Transactions on Computational Social Systems, 2023.
- Cheng, G., Han, J., A survey on object detection in optical remote sensing images., ISPRS journal of photogrammetry and remote sensing, 2016, 11-28.
- Geronimo, D., Lopez, A. M., Sappa, A. D., Graf, T., Survey of pedestrian detection for advanced driver assistance systems., IEEE transactions on pattern analysis and machine intelligence, 2009, 1239-1258.
- Jensen, M. B., Philipsen, M. P., Møgelmose, A., Moeslund, T. B., Trivedi, M., Vision for looking at traffic lights: Issues, survey, and perspectives., IEEE transactions on intelligent transportation systems, 2016, 1800-1815.
- Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Zitnick, C. L., Microsoft coco: Common objects in context., Proceedings of the European conference on computer vision (ECCV), 2014, 740-755.
- Xu, S., Wang, X., Lv, W., Chang, Q., Cui, C., Deng, K., Lai, B., PP-YOLOE: An evolved version of YOLO., arXiv preprint arXiv:2203.16250.
- Yang, C., Huang, Z., Wang, N., QueryDet: Cascaded sparse query for accelerating high-resolution small object detection., Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, 2022, 13668-13677.
- He, K., Zhang, X., Ren, S., Sun, J., Deep residual learning for image recognition., Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, 770-778.
- Li, Y., Chen, Y., Wang, N., Zhang, Z., Scale-aware trident networks for object detection., Proceedings of the IEEE/CVF international conference on computer vision, 2019, 6054-6063.
- Chen, L., Zheng, H., Yan, Z., Li, Y., Discriminative region mining for object detection., IEEE Transactions on Multimedia, 2020, 4297-4310.
- Li, J., Liang, X., Wei, Y., Xu, T., Feng, J., Yan, S., Perceptual generative adversarial networks for small object detection., Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, 1222-1230.
- Cai, Z., Fan, Q., Feris, R. S., Vasconcelos, N., A unified multi-scale deep convolutional neural network for fast object detection., Proceedings of the European conference on computer vision (ECCV), 2016, 354-370.
- Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S., Feature pyramid networks for object detection., Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, 2117-2125.
- Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., Berg, A. C., Ssd: Single shot multibox detector., Proceedings of the European conference on computer vision (ECCV), 2016, 21-37.
- Lou, H., Duan, X., Guo, J., Liu, H., Gu, J., Bi, L., Chen, H., DC-YOLOv8: small-size object detection algorithm based on camera sensor., Electronics, 12(10), 2323.
- Yu, W., Zhou, P., Yan, S., Wang, X., Inceptionnext: When inception meets convnext., arXiv preprint arXiv:2303.16900.
- Zhu, P., Wen, L., Du, D., Bian, X., Ling, H., Hu, Q., Song, Z., Visdrone-det2018: The vision meets drone object detection in image challenge results., Proceedings of the European Conference on Computer Vision (ECCV) Workshops, 2018.
- Du, D., Qi, Y., Yu, H., Yang, Y., Duan, K., Li, G., Tian, Q., The unmanned aerial vehicle benchmark: Object detection and tracking., Proceedings of the European conference on computer vision (ECCV), 2018, 370-386.
- Puertas, E., De-Las-Heras, G., Fernández-Andrés, J., Sánchez-Soriano, J., Dataset: Roundabout Aerial Images for Vehicle Detection., Data, 2022, 47.
- Girshick, R., Donahue, J., Darrell, T., Malik, J., Rich feature hierarchies for accurate object detection and semantic segmentation., Proceedings of the IEEE conference on computer vision and pattern recognition, 2014, 580-587.
- He, K., Zhang, X., Ren, S., Sun, J., Spatial pyramid pooling in deep convolutional networks for visual recognition., IEEE transactions on pattern analysis and machine intelligence, 2015, 1904-1916.
- GIRSHICK, Ross., Fast r-cnn., Proceedings of the IEEE international conference on computer vision, 2015, 1440-1448.
- Redmon, J., Divvala, S., Girshick, R., Farhadi, A., You only look once: Unified, real-time object detection., Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, 779-788.
- Zhang, Z., Drone-YOLO: an efficient neural network method for target detection in drone images., Drones, 7(8), 526.
- He, K., Gkioxari, G., Dollár, P., Girshick, R., Mask r-cnn., Proceedings of the IEEE international conference on computer vision, 2017, 2961-2969.
- Dai, J., Li, Y., He, K., Sun, J., R-fcn: Object detection via region-based fully convolutional networks., Advances in neural information processing systems, 2016, 29.
- Redmon, J., Farhadi, A., Yolov3: An incremental improvement., arXiv preprint arXiv:1804.02767.
- Bochkovskiy, A., Wang, C. Y., Liao, H. Y. M., Yolov4: Optimal speed and accuracy of object detection., arXiv preprint arXiv:2004.10934.
- Tian, Z., Shen, C., Chen, H., He, T., Fcos: Fully convolutional one-stage object detection., Proceedings of the IEEE/CVF international conference on computer vision, 2019, 9627-9636.
- Uzkent, B., Yeh, C., Ermon, S., Efficient object detection in large images using deep reinforcement learning., Proceedings of the IEEE/CVF winter conference on applications of computer vision, 2020, 1824-1833.
- Kong, T., Sun, F., Liu, H., Jiang, Y., Li, L., Shi, J., Foveabox: Beyound anchor-based object detection., IEEE Transactions on Image Processing, 2020, 7389-7398.
- Law, H., Deng, J., Cornernet: Detecting objects as paired keypoints., Proceedings of the European conference on computer vision (ECCV), 2018, 734-750.
- Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J., Yolox: Exceeding yolo series in 2021., arXiv preprint arXiv:2107.08430.
- Lee, Y., Park, J., Centermask: Real-time anchor-free instance segmentation., Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, 13906-13915.
- Feng, C., Zhong, Y., Gao, Y., Scott, M. R., Huang, W., Tood: Task-aligned one-stage object detection., In 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021, 3490-3499.
- Zoph, B., Cubuk, E. D., Ghiasi, G., Lin, T. Y., Shlens, J., Le, Q. V., Learning data augmentation strategies for object detection., Proceedings of the European conference on computer vision (ECCV), 2020, 566-583.
- Yu, F., Koltun, V., Multi-scale context aggregation by dilated convolutions., arXiv preprint arXiv:1511.07122.
- Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A. L., Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs., IEEE transactions on pattern analysis and machine intelligence, 2017, 834-848.
- He, K., Zhang, X., Ren, S., Sun, J., Identity mappings in deep residual networks., Proceedings of the European conference on computer vision (ECCV), 2016, 630-645.
- Yu, G., Chang, Q., Lv, W., Xu, C., Cui, C., Ji, W., Ma, Y., PP-PicoDet: A better real-time object detector on mobile devices., arXiv preprint arXiv:2111.00902.
- Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S., Generalized intersection over union: A metric and a loss for bounding box regression., In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, 658-666.
- Li, X., Wang, W., Wu, L., Chen, S., Hu, X., Li, J., Yang, J., Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection., Advances in Neural Information Processing Systems, 33, 2020, 21002-21012.