Have a personal or library account? Click to login
Eigenvalue-Based Incremental Spectral Clustering Cover

References

  1. J. Tu, G. Mei, and F. Picciallib, An improved Nyström spectral graph clustering using k-core decomposition as a sampling strategy for large networks, Journal of King Saud University - Computer and Information Sciences, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1319157822001379
  2. H. Sevi, M. Jonckheere, and A. Kalogeratos, Generalized spectral clustering for directed and undirected graphs, 2022, https://arxiv.org/abs/2203.03221.
  3. S. Wierzchoń and M. Kłopotek, Modern Clustering Algorithms, ser. Studies in Big Data. Springer Verlag, 2018, vol. 34.
  4. R. Janani and S. Vijayarani, Text document clustering using spectral clustering algorithm with particle swarm optimization, Expert Systems with Applications, vol. 134, pp. 192–200, 2019.
  5. P. Shrestha, C. Jacquin, and B. Daille, Clustering short text and its evaluation, in Computational Linguistics and Intelligent Text Processing. CICLing 2012, ser. Lecture Notes in Computer Science, A. Gelbukh, Ed., vol. 7182. Springer, Berlin, Heidelberg, 2012, p. 169–180, https://doi.org/10.1007/978-3-642-28601-8_15.
  6. F. Nie, Z. Zeng, I. Tsang, D. Xu, and C. Chang-shui, Spectral embedded clustering: A framework for in-sample and out-of-sample spectral clustering, IEEE Trans. Neur. Netw., 2011.
  7. Y. Bengio, J. Paiement, P. Vincent, O. Delalleau, N. L. Roux, and M. Ouimet, Out-of-sample extensions for LLE, ISOMAP, MDS, eigenmaps, and spectral clustering, in NIPS 16, 2003, pp. 177–184.
  8. C. Alzate and J. Suykens, Multiway spectral clustering with out-of-sample extensions through weighted kernel pca, IEEE Tran. on Pattern Analysis and Machine Intelligence, vol. 32, no. 2, pp. 335 – 347, 2010.
  9. D. Shen, X. Li, and G. Yan, Improve the spectral clustering by integrating a new modularity similarity index and out-of-sample extension, Modern Physics Letters B, vol. 34, no. 11, p. 2050105, 2020.
  10. P. Borkowski, M. Kłopotek, B. Starosta, S. Wierzchoń, and M. Sydow, Eigen-value based spectral classification, PLOS ONE, vol. 18, no. 4, p. e0283413, 2023, https://doi.org/10.1371/journal.pone.0283413.
  11. J. Chen, Convergence rate of krasulina estimator, Statistics & Probability Letters, vol. 155, p. 108562, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0167715219302081.
  12. B. Mandal, X. Jiang, H.-L. Eng, and A. Kot, Prediction of eigenvalues and regularization of eigenfeatures for human face verification, Pattern Recognition Letters, vol. 31, no. 8, pp. 717–724, 2010, award winning papers from the 19th International Conference on Pattern Recognition (ICPR).
  13. S. T. Wierzchon and M. A. Klopotek, Spectral cluster maps versus spectral clustering, in Computer Information Systems and Industrial Management, ser. LNCS, vol. 12133. Springer, 2020, pp. 472–484. [Online]. Available: https://doi.org/10.1007/978-3-030-47679-3_40.
  14. D. Lee, T. Hoshi, T. Sogabe, Y. Miyatake, and S.-L. Zhang, Solution of the k-th eigenvalue problem in large-scale electronic structure calculations, Journal of Computational Physics, vol. 371, pp. 618–632, 2018.
  15. U. v. Luxburg, A tutorial on spectral clustering, Statistics and Computing, vol. 17, no. 4, pp. 395–416, 2007, http://dx.doi.org/10.1007/s11222-007-9033-z.
  16. S. Kamvar, D. Klein, and C. Manning, Spectral learning, in Proceedings of the 18th International Joint Conf. on Artificial intelligence. IJCAI’03, 2003, p. 561–566.
  17. R. Suganthi and S. Manimekalai, Spectral clustering based classification algorithm for text classification, International Journal of Engineering Science Invention (IJESI), pp. 36–41, 2018, http://www.ijesi.org/papers/NCIOT-2018/Volume-3/7.%2036-41.pdf.
  18. N. Rebagliati and A. Verri, Spectral clustering with more than K eigenvectors, Neurocomputing, vol. 74, no. 9, pp. 1391–1401, Apr 2011, https://doi.org/10.1016/j.neurocom.2010.12.08.
  19. S. Li and J. Hao, Spectral clustering-based semi-supervised sentiment classification, in Advanced Data Mining and Applications. ADMA 2012, S. Zhou, S. Zhang, and G. Karypis, Eds., vol. LNAI 7713. Springer-Verlag Berlin Heidelberg, 2012, pp. 271–283, https://doi.org/10.1007/978-3-642-35527-1_23.
  20. B. Liu, X. Shen, and W. Pan, Semi-supervised spectral clustering with application to detect population stratification, Frontiers in Genetics, p. Article 215, Oct 2013, https://doi.org/10.3389/fgene.2013.00215.
  21. W.-Y. Chen, Y. Song, H. Bai, C.-J. Lin, and E. Y. Chang, Parallel spectral clustering in distributed systems, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 3, pp. 568–586, 2011.
  22. D. Cai and X. Chen, Large scale spectral clustering via landmark-based sparse representation, IEEE Transactions on Cybernetics, vol. 45, no. 8, pp. 1669–1680, 2015.
  23. D. Huang, C.-D. Wang, J.-S. Wu, J.-H. Lai, and C.-K. Kwoh, Ultra-scalable spectral clustering and ensemble clustering, IEEE Transactions on Knowledge and Data Engineering, vol. 32, no. 6, pp. 1212–1226, 2020.
  24. D. Sitnik and I. Kopriva, Clustering and classification of low-dimensional data in explicit feature map domain: intraoperative pixel-wise diagnosis of adenocarcinoma of a colon in a liver, 2022.
  25. H. Li, X. Ye, A. Imakura, and T. Sakurai, Divide-and-conquer based large-scale spectral clustering, Neurocomputing, vol. 501, pp. 664–678, aug 2022. [Online]. Available: https://doi.org/10.1016.
  26. X. Hong, J. Gao, H. Wei, J. Xiao, and R. Mitchell, Two-step scalable spectral clustering algorithm using landmarks and probability density estimation,” Neurocomputing, vol. 519, pp. 173–186, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925231222014497.
  27. H. Li, X. Ye, A. Imakura, and T. Sakurai, Lsec: Large-scale spectral ensemble clustering, 2021.
  28. C. Fowlkes, S. Belongie, F. Chung, and J. Malik, Spectral grouping using the Nyström method, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 2, 2004.
  29. C. Alzate and J. Suykens, A weighted kernel pca formulation with out-of-sample extensions for spectral clustering methods, in The 2006 IEEE International Joint Conference on Neural Network Proceedings, 2006, pp. 138–144.
  30. C. Alzate and J. A. K. Suykens, Out-of-sample eigenvectors in kernel spectral clustering, in The 2011 International Joint Conference on Neural Networks, 2011, pp. 2349–2356.
  31. S. Li, S. Ouyang, and Y. Liu, Understanding the generalization performance of spectral clustering algorithms, in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37/7, 2023, pp. 8614–8621.
  32. K. D. Levin, F. Roosta-Khorasani, M. W. Mahoney, and C. E. Priebe, Out-of-sample extension of graph adjacency spectral embedding, in International Conference on Machine Learning, 2018.
  33. L. R. Rabiner and B.-H. Juang, Fundamentals of Speech Recognition, Chaspter 4. Englewood Cliffs, NJ: Prentice Hall, 1993.
Language: English
Page range: 157 - 169
Submitted on: Sep 1, 2023
Accepted on: Feb 7, 2024
Published on: Mar 19, 2024
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Mieczysław A. Kłopotek, Bartłomiej Starosta, Sławomir T. Wierzchoń, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.