References
- Lane T. (2018). A short history of robotic surgery. Annals of the Royal College of Surgeons of England, 100(6 sup), 5–7. https://doi.org/10.1308/rcsann.supp1.5
- Liu P.-R., Lu L., Zhang J.-Y., Huo T.-T., Liu S.-X., & Ye Z.-W. (2021). Application of Artificial Intelligence in Medicine: An Overview. Current Medical Science, 41(6), 1105–1115. https://doi.org/10.1007/s11596-021-2474-3
- Zhang Y., Weng Y., & Lund J. (2022). Applications of Explainable Artificial Intelligence in Diagnosis and Surgery. Diagnostics (Basel, Switzerland), 12(2), 237. https://doi.org/10.3390/diagnostics12020237
- Ribeiro M. T., Singh S., & Guestrin C. (2016). ”Why Should I Trust You?”: Explaining the Predictions of Any Classifier (arXiv:1602.04938). arXiv. http://arxiv.org/abs/1602.04938
- Lundberg S. M., & Lee S.-I. (2017). A Unified Approach to Interpreting Model Predictions. Advances in Neural Information Processing Systems, 30. https://papers.nips.cc/paperfiles/paper/2017/hash/8a20a8621978632d76c4-3dfd28b67767-Abstract.html
- Camalan S., Mahmood H., Binol H., Araújo A. L. D. Santos-Silva, A. R. Vargas, P. A. Lopes, M. A. Khurram, S. A. & Gurcan, M. N. (2021). Convolutional Neural Network-Based Clinical Predictors of Oral Dysplasia: Class Activation Map Analysis of Deep Learning Results. Cancers, 13(6), 1291. https://doi.org/10.3390/cancers13061291
- Selvaraju R. R., Cogswell M., Das A., Vedantam R., Parikh D., & Batra D. (2020). Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. International Journal of Computer Vision, 128(2), 336–359. https://doi.org/10.1007/s11263-019-01228-7
- Fuhrman J. D., Gorre N., Hu Q., Li H., El Naqa I., & Giger, M. L. (2022). A review of explainable and interpretable AI with applications in COVID-19 imaging. Medical Physics, 49(1), 1–14. https://doi.org/10.1002/mp.15359
- Vinogradova K., Dibrov A., & Myers G. (2020, April). Towards interpretable semantic segmentation via gradient-weighted class activation mapping (student abstract). In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, No. 10, pp. 13943-13944)
- Phillips P. J., Hahn C. A., Fontana P. C., Yates A. N., Greene, K., Broniatowski, D. A., & Przybocki, M. A. (2021). Four principles of explainable artificial intelligence (NIST IR 8312; c. NIST IR 8312). National Institute of Standards and Technology (U.S.). https://doi.org/10.6028/NIST.IR.8312
- Shakhovska N., & Pukach P. (2022). Comparative Analysis of Backbone Networks for Deep Knee MRI Classification Models. Big Data and Cognitive Computing, 6(3), 69. https://doi.org/10.3390/bdcc6030069
- Johnson K. W., Torres Soto J., Glicksberg B. S., Shameer K., Miotto, R., Ali M., Ashley E., & Dudley J. T. (2018). Artificial Intelligence in Cardiology. Journal of the American College of Cardiology, 71(23), 2668–2679. https://doi.org/10.1016/j.jacc.2018.03.521
- Lipkova J., Chen R. J., Chen B., Lu M. Y., Barbieri M., Shao, D., Vaidya A. J., Chen C., Zhuang, L., Williamson D. F. K., Shaban M., Chen, T. Y., & Mahmood F. (2022). Artificial intelligence for multimodal data integration in oncology. Cancer Cell, 40(10), 1095–1110. https://doi.org/10.1016/j.ccell.2022.09.012
- Schwendicke F., Samek W., & Krois J. (2020). Artificial Intelligence in Dentistry: Chances and Challenges. Journal of Dental Research, 99(7), 769–774. https://doi.org/10.1177/0022034520915714
- Vo T. H., Nguyen N. T. K., Kha Q. H., & Le N. Q. K. (2022). On the road to explainable AI in drug-drug interactions prediction: A systematic review. Computational and Structural Biotechnology Journal, 20, 2112–2123. https://doi.org/10.1016/j.csbj.2022.04.021
- [16]Štajduhar I., Mamula M., Miletić D., &Ünal G. (2017). Semi-automated detection of anterior cruciate ligament injury from MRI. Computer Methods and Programs in Biomedicine, 140, 151–164. https://doi.org/10.1016/j.cmpb.2016.12.006
- Krizhevsky A., Sutskever I., & Hinton G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems, 25. https://proceedings.neurips.cc/paperfiles/paper/2012/hash/c399862d3b9d6b76c-8436e924a68c45b-Abstract.html
- Zhang R., Du L., Xiao, Q., & Liu J. (2020, May). Comparison of backbones for semantic segmentation network. In Journal of Physics: Conference Series (Vol. 1544, No. 1, p. 012196). IOP Publishing.
- Woldan P., Duda P., Cader A., & Laktionov I. (2023). A new approach to image-based recommender systems with the application of heatmaps maps. Journal of Artificial Intelligence and Soft Computing Research, 13(2), 63-72.
- Nowicki R. K., Seliga R., ˙Zelasko D., & Hayashi Y. (2021). Performance analysis of rough set–based hybrid classification systems in the case of missing values. Journal of Artificial Intelligence and Soft Computing Research, 11(4), 307-318.
- Baradaran Rezaei, H., Amjadian, A., Sebt, M. V., Askari, R., & Gharaei, A. (2023). An ensemble method of the machine learning to prognosticate the gastric cancer. Annals of Operations Research, 328(1), 151-192.
- Dong H., Sun J., & Sun X. (2021). A multi-objective multi-label feature selection algorithm based on shapley value. Entropy, 23(8), 1094.
- Starczewski Janusz T., Przybyszewski Krzysztof, Byrski Aleksander, Szmidt Eulalia & Napoli Christian. (2022). A Novel Approach to Type-Reduction and Design of Interval Type-2 Fuzzy Logic Systems” Journal of Artificial Intelligence and Soft Computing Research, 12(3), 197-206.
- Laktionov I., Diachenko G., Rutkowska D. & Kisiel-Dorohinicki,M.(2023).An Explainable AI Approach to Agrotechnical Monitoring and Crop Diseases Prediction in Dnipro Region of Ukraine. Journal of Artificial Intelligence and Soft Computing Research,13(4) 247-272.