References
- W.M. Shaban, A.H. Rabie, A.I. Saleh, M.A. Abo-Elsoud, A new COVID-19 Patients Detection Strategy (CPDS) based on hybrid feature selection and enhanced KNN classifier, Knowledge-Based Syst. 205 (2020) 106270.
- J. Li, C. Huang, Y. Yang, J. Liu, X. Lin, J. Pan, How nursing students’ risk perception affected their professional commitment during the COVID-19 pandemic: the mediating effects of negative emotions and moderating effects of psychological capital, Humanit. Soc. Sci. Commun. 10 (2023) 1–9.
- M.M. Islam, F. Karray, R. Alhajj, J. Zeng, A review on deep learning techniques for the diagnosis of novel coronavirus (COVID-19), Ieee Access. 9 (2021) 30551–30572.
- Q. Zhang, Y. Wang, R.-T. Bai, B.-R. Lian, Y. Zhang, L.-M. Cao, X-linked Charcot-Marie-Tooth disease after SARS-CoV-2 vaccination mimicked stroke-like episodes: A case report, World J. Clin. Cases. 11 (2023) 464.
- T. Sharma, R. Nair, S. Gomathi, Breast cancer image classification using transfer learning and convolutional neural network, Int. J. Mod. Res. 2 (2022) 8–16.
- I. Chatterjee, Artificial intelligence and patentability: review and discussions, Int. J. Mod. Res. 1 (2021) 15–21.
- W. Dang, L. Xiang, S. Liu, B. Yang, M. Liu, Z. Yin, L. Yin, W. Zheng, A Feature Matching Method based on the Convolutional Neural Network., J. Imaging Sci. Technol. 67 (2023).
- P.K. Vaishnav, S. Sharma, P. Sharma, Analytical review analysis for screening COVID-19 disease, Int. J. Mod. Res. 1 (2021) 22–29.
- W. Wang, F. Qi, D. Wipf, C. Cai, T. Yu, Y. Li, Z. Yu, W. Wu, Sparse Bayesian Learning for Endto-End EEG Decoding, IEEE Trans. Pattern Anal. Mach. Intell. (2023).
- B. Cheng, D. Zhu, S. Zhao, J. Chen, Situation-aware IoT service coordination using the event-driven SOA paradigm, IEEE Trans. Netw. Serv. Manag. 13 (2016) 349–361.
- X. Shen, S.-C. Du, Y.-N. Sun, P.Z.H. Sun, R. Law, E.Q. Wu, Advance Scheduling for Chronic care under online or Offline revisit uncertainty, IEEE Trans. Autom. Sci. Eng. (2023).
- S. Lu, J. Yang, B. Yang, Z. Yin, M. Liu, L. Yin, W. Zheng, Analysis and Design of Surgical Instrument Localization Algorithm., C. Model. Eng. Sci. 137 (2023).
- X. Yi, X. Guan, C. Chen, Y. Zhang, Z. Zhang, M. Li, P. Liu, A. Yu, X. Long, L. Liu, Adrenal incidentaloma: machine learning-based quantitative texture analysis of unenhanced CT can effectively differentiate sPHEO from lipid-poor adrenal adenoma, J. Cancer. 9 (2018) 3577.
- Z.A.A. Alyasseri, M.A. Al-Betar, I.A. Doush, M.A. Awadallah, A.K. Abasi, S.N. Makhadmeh, O.A. Alomari, K.H. Abdulkareem, A. Adam, R. Damasevicius, Review on COVID-19 diagnosis models based on machine learning and deep learning approaches, Expert Syst. 39 (2022) e12759.
- S. Lawrence, C.L. Giles, Overfitting and neural networks: conjugate gradient and backpropagation, in: Proc. IEEE-INNS-ENNS Int. Jt. Conf. Neural Networks. IJCNN 2000. Neural Comput. New Challenges Perspect. New Millenn., IEEE, 2000: pp. 114–119.
- N. Wang, J. Chen, W. Chen, Z. Shi, H. Yang, P. Liu, X. Wei, X. Dong, C. Wang, L. Mao, The effectiveness of case management for cancer patients: an umbrella review, BMC Health Serv. Res. 22 (2022) 1–20.
- S.K. Shukla, V.K. Gupta, K. Joshi, A. Gupta, M.K. Singh, Self-aware execution environment model (SAE2) for the performance improvement of multicore systems, Int. J. Mod. Res. 2 (2022) 17–27.
- T. Clarke, P. Ayres, J. Sweller, The impact of sequencing and prior knowledge on learning mathematics through spreadsheet applications, Educ. Technol. Res. Dev. (2005) 15–24.
- Y. Wang, Q. Yao, J.T. Kwok, L.M. Ni, Generalizing from a few examples: A survey on few-shot learning, ACM Comput. Surv. 53 (2020) 1–34.
- J. Vanschoren, Meta-learning, Autom. Mach. Learn. Methods, Syst. Challenges. (2019) 35–61.
- T. Hospedales, A. Antoniou, P. Micaelli, A. Storkey, Meta-learning in neural networks: A survey, IEEE Trans. Pattern Anal. Mach. Intell. 44 (2021) 5149–5169.
- J.R. Anderson, Is human cognition adaptive?, Behav. Brain Sci. 14 (1991) 471–485.
- J.L. McClelland, M.M. Botvinick, D.C. Noelle, D.C. Plaut, T.T. Rogers, M.S. Seidenberg, L.B. Smith, Letting structure emerge: connectionist and dynamical systems approaches to cognition, Trends Cogn. Sci. 14 (2010) 348–356.
- Y. Ma, G. Zhong, W. Liu, Y. Wang, P. Jiang, R. Zhang, ML-CGAN: conditional generative adversarial network with a meta-learner structure for high-quality image generation with few training data, Cognit. Comput. 13 (2021) 418–430.
- Y. Zhang, B. Lian, S. Yang, X. Huang, Y. Zhou, L. Cao, Metabotropic glutamate receptor 5-related autoimmune encephalitis with reversible splenial lesion syndrome following SARS-CoV-2 vaccination, Medicine (Baltimore). 102 (2023).
- Z. Gao, X. Pan, J. Shao, X. Jiang, Z. Su, K. Jin, J. Ye, Automatic interpretation and clinical evaluation for fundus fluorescein angiography images of diabetic retinopathy patients by deep learning, Br. J. Ophthalmol. (2022).
- Y. Liu, Y. Wu, X. Shen, L. Xie, COVID-19 multi-targeted drug repurposing using few-shot learning, Front. Bioinforma. 1 (2021) 693177.
- Y. Wang, C. Jiang, Y. Wu, T. Lv, H. Sun, Y. Liu, L. Li, X. Pan, Semantic-Powered Explainable Model-Free Few-Shot Learning Scheme of Diagnosing COVID-19 on Chest X-ray, IEEE J. Biomed. Heal. Informatics. 26 (2022) 5870–5882.
- W. Li, Diagnose COVID-19 Based on CT Images Using Transfer Learning, in: 2021 2nd Int. Conf. Artif. Intell. Comput. Eng., IEEE, 2021: pp. 740–744.
- X. Chen, L. Yao, T. Zhou, J. Dong, Y. Zhang, Momentum contrastive learning for few-shot COVID-19 diagnosis from chest CT images, Pattern Recognit. 113 (2021) 107826.
- Y. Ge, Y. Guo, Y.-C. Yang, M.A. Al-Garadi, A. Sarker, Few-shot learning for medical text: A systematic, (n.d.).
- Y. Jiang, H. Chen, H. Ko, D.K. Han, Few-shot learning for ct scan based covid-19 diagnosis, in: ICASSP 2021-2021 IEEE Int. Conf. Acoust. Speech Signal Process., IEEE, 2021: pp. 1045–1049.
- R. Abdrakhmanov, M. Altynbekov, A. Abu, A. Shomanov, D. Viderman, M.-H. Lee, Few-shot learning approach for COVID-19 detection from X-ray images, in: 2021 16th Int. Conf. Electron. Comput. Comput., IEEE, 2021: pp. 1–3.
- M. Abdel-Basset, V. Chang, H. Hawash, R.K. Chakrabortty, M. Ryan, FSS-2019-nCov: A deep learning architecture for semi-supervised few-shot segmentation of COVID-19 infection, Knowledge-Based Syst. 212 (2021) 106647.
- P. Singh, P. Mazumder, Dual class representation learning for few-shot image classification, Knowledge-Based Syst. 238 (2022) 107840.
- X. Wang, Y. Yuan, D. Guo, X. Huang, Y. Cui, M. Xia, Z. Wang, C. Bai, S. Chen, SSA-Net: Spatial self-attention network for COVID-19 pneumonia infection segmentation with semi-supervised few-shot learning, Med. Image Anal. 79 (2022) 102459.
- M. Shorfuzzaman, M.S. Hossain, MetaCOVID: A Siamese neural network framework with contrastive loss for n-shot diagnosis of COVID-19 patients, Pattern Recognit. 113 (2021) 107700.
- R. Abdrakhmanov, D. Viderman, K.-S. Wong, M. Lee, Few-Shot Learning based on Residual Neural Networks for X-ray Image Classification, in: 2022 IEEE Int. Conf. Syst. Man, Cybern., IEEE, 2022: pp. 1817–1821.
- X. Yang, X. He, J. Zhao, Y. Zhang, S. Zhang, P. Xie, COVID-CT-dataset: a CT scan dataset about COVID-19, (2020).
- C. Interiano, S. Muze, B. Turner, M. Gonzalez, B. Rogers, R. Jerris, E. Weinzierl, M. Elkhalifa, V. Leung-Pineda, Dataset for longitudinal evaluation of the Abbott ARCHITECT SARS-CoV-2 IgM and IgG assays in a pediatric population divided by age, Data Br. 36 (2021) 107110.
- E. Neri, V. Miele, F. Coppola, R. Grassi, Use of CT and artificial intelligence in suspected or COVID-19 positive patients: statement of the Italian Society of Medical and Interventional Radiology, Radiol. Med. 125 (2020) 505–508.
- Y. Zhuang, N. Jiang, Y. Xu, Progressive distributed and parallel similarity retrieval of large CT image sequences in mobile telemedicine networks, Wirel. Commun. Mob. Comput. 2022 (2022) 1–13.
- S. Lu, B. Yang, Y. Xiao, S. Liu, M. Liu, L. Yin, W. Zheng, Iterative reconstruction of low-dose CT based on differential sparse, Biomed. Signal Process. Control. 79 (2023) 104204.
- F. Pahde, M. Puscas, T. Klein, M. Nabi, Multi-modal prototypical networks for few-shot learning, in: Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis., 2021: pp. 2644–2653.
- Y. Gong, Y. Yue, W. Ji, G. Zhou, Cross-domain few-shot learning based on pseudo-Siamese neural network, Sci. Rep. 13 (2023) 1427.
- X. Xu, Z. Wang, Z. Chi, H. Yang, W. Du, Complementary features based prototype self-updating for few-shot learning, Expert Syst. Appl. 214 (2023) 119067.
- Z. Wang, P. Ma, Z. Chi, D. Li, H. Yang, W. Du, Multi-attention mutual information distributed framework for few-shot learning, Expert Syst. Appl. 202 (2022) 117062.
- B. Oreshkin, P. Rodríguez López, A. Lacoste, Tadam: Task dependent adaptive metric for improved few-shot learning, Adv. Neural Inf. Process. Syst. 31 (2018).
- P. Tian, W. Li, Y. Gao, Consistent meta-regularization for better meta-knowledge in few-shot learning, IEEE Trans. Neural Networks Learn. Syst. 33 (2021) 7277–7288.
- J. Snell, K. Swersky, R. Zemel, Prototypical networks for few-shot learning, Adv. Neural Inf. Process. Syst. 30 (2017).
- X. Luo, H. Wu, J. Zhang, L. Gao, J. Xu, J. Song, A Closer Look at Few-shot Classification Again, ArXiv Prepr. ArXiv2301.12246. (2023).
- X. Li, M. Khishe, L. Qian, Evolving deep gated recurrent unit using improved marine predator algorithm for profit prediction based on financial accounting information system, Complex Intell. Syst. (2023) 1–17.
- L. Qian, J. Bai, Y. Huang, D.Q. Zeebaree, A. Saffari, D.A. Zebari, Breast cancer diagnosis using evolving deep convolutional neural network based on hybrid extreme learning machine technique and improved chimp optimization algorithm, Biomed. Signal Process. Control. 87 (2024) 105492
- Y. Zhang, Y. Guo, Y. Jin, Y. Luo, Z. He, H. Lee, Unsupervised discovery of object landmarks as structural representations, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018: pp. 2694–2703.