References
- E. J, M. J. Blaha, S. E. Chiuve, Benjamin. Heart disease and stroke statistics-2017 update: a report from the american heart association, Circulation, vol. 135, pp. E646-E646, 2017.
- X. Li, C. Wu, J. Lu, et al., Cardiovascular risk factors in China: a nationwide population-based cohort study, The Lancet Public Health, vol. 5, pp. e672-e681, 2020.
- A. Isin, S. Ozdalili, Cardiac arrhythmia detection using deep learning, Procedia Computer Science, vol. 120, pp.268-275, 2017.
- Z. Yldrm, P. Pawiak, S. T. Ru , et al., Arrhythmia detection using deep convolutional neural network with long duration ECG signals, Computers in Biology and Medicine, vol.102, pp.411-420, 2018.
- A. Mb, B. Tt, B. Sd, D. Rstc, et al., Automated arrhythmia detection with homeomorphically irreducible tree technique using more than 10,000 individual subject ECG records, Information Sciences, vol. 575, pp.323-337, 2021.
- A. Y. Hannun, P. Rajpurkar, M. Haghpanahi, et al., Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network, Nature medicine, vol. 25, pp. 65-69, 2019.
- C. Vimal, B. Sathish, Random forest classifier based ECG arrhythmia classification, International Journal of Healthcare Information Systems & Informatics, vol. 5, pp. 1-10,2009.
- V. N. Pham, H. L. Tran, Electrocardiogram (ECG) circuit design and using the random forest to ECG arrhythmia classification, Lecture Notes in Networks and Systems, DOI:https://doi.org/10.1007/978-3-031-22200-954, 2023.
- A. H. Khandoker, M. Palaniswami, C. K. Karmakar, Support vector machines for automated recognition of obstructive sleep apnea syndrome from ECG recordings, IEEE Transactions on Information Technology in Biomedicine, vol. 13, 37-48, 2009.
- E. H. Houssein, I. E. Ibrahim, N. Neggaz, et al., An efficient ecg arrhythmia classification method based on manta ray foraging optimization, Expert Systems with Applications, DOI: https://doi.org/10.1016/j.eswa.2021.115131,2021.
- Y. W. Hau, H. W. Lim, C. W. Lim, et al., P204 automated detection of atrial fibrillation based on stationary wavelet transform and artificial neural network targeted for embedded system-on-chip technology, European Heart Journal, DOI: 10.1093/ehjci/ehz872.075, 2020.
- M. Alfaro-Ponce, I. Chairez, R. Etienne-Cummings, Automatic detection of electrocardiographic arrhythmias by parallel continuous neural networks implemented in FPGA, Neural Computing and Applications, vol. 31, 363-375, 2017.
- M. I. Owis, A. H. Abou-Zied, A. B. M. Youssef, et al., Study of features based on nonlinear dynamical modeling in ECG arrhythmia detection and classification, IEEE transactions on biomedical engineering, vol. 49, pp. 733-736, 2002.
- B. Venkataramanaiah, J. Kamala, ECG signal processing and KNN classifier-based abnormality detection by VH-doctor for remote cardiac health-care monitoring, Soft Computing, vol.24, 17457-17466,2020.
- T. Tuncer, S. Dogan, P. Plawiak, et al., Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals, Knowledge-Based Systems, vol. 186, pp. 1-19, 2019.
- D. A. Coast, R. M. Stern, G. G. Cano, et al., An approach to cardiac arrhythmia analysis using hidden Markov models, IEEE Transactions on Biomedical Engineering, vol. 37, pp. 826-836, 2002.
- A. Sadoughi, M. B. Shamsollahi, E. Fatemizadeh, et al., Detection of Apnea bradycardia from ECG signals of preterm infants using layered hidden markov model, Annals of Biomedical Engineering, vol. 49, pp. 2159-2169, 2021.
- C. Angermueller, T. P¨arnamaa, L. Parts, et al., Deep learning for computational biology, Molecular Systems Biology, DOI: 10.15252/msb.20156651, 2016.
- Y. Lecun, Y. Bengio, G. Hinton, Deep learning, Nature, vol. 521, pp.436-444, 2015.
- Y. H. Awni, R. Pranva, H. Masoumeh, et al., Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network, Nature Medicine, vol. 25, pp.65-69,2019.
- C. Uraab, L. Shu, A. Yh, et al., (2017). A deep convolutional neural network model to classify heartbeats. Computers in Biology and Medicine, 89(2017)389-396.
- L. Fiorina, B. Lefebvre, C. Gardella, et al., Smartwatch-based detection of atrial arrhythmia using a deep neural network in a tertiary care hospital, Europace, DOI: https://doi.org/10.1093/europace/euac053.563, 2022.
- F. Uslu, M. Varela, G. Boniface, et al., LA-Net: A Multi-task deep network for the segmentation of the left atrium, IEEE transactions on medical imaging, 41 (2)(2021)456-464.
- X. Fan, Q. Yao, Y. Cai, et al., Multiscaled fusion of deep convolutional neural networks for screening atrial fibrillation from single lead short ECG recordings, IEEE Journal of Biomedical and Health Informatics, 22(6)( 2018)1744-1753.
- H. M. Lynn, S. B. Pan, P. Kim, A deep bidirectional GRU network model for biometric electrocardiogram classification based on recurrent neural networks, IEEE Access, 7(2019)145395-145405.
- R. S. Andersen, A. Peimankar, S. Puthusserypady, A deep learning approach for real-time detection of atrial fibrillation, Expert Systems with Applications, 115(2019)465-473.
- S. Mousavi, F. Afghah, A. Razi, et al., ECGNET: Learning where to attend for detection of atrial fibrillation with deep visual attention, In 2019 IEEE EMBS International Conference on Biomedical & Health Informatics 2019, pp.1-4.
- E. Choi, M. T. Bahadori, J. Sun, et al.. Retain: An interpretable predictive model for healthcare using reverse time attention mechanism, In advances in neural information processing systems, 2016, pp. 3504-3512.
- F. Wu, B. B. Liao, Y. H. Han Interpretability for Deep Learning, Aero Weaponry, 2019(1) 39-46.
- P. W. Koh, P. Liang, Understanding black-box predictions via influence functions, 70(2017) 1885–1894.
- Q. Zhang, Y. N. Wu, S. C. Zhu, Interpretable convolutional neural networks, In: 2018 IEEE/CVF conference on computer vision and pattern recognition, DOI: 10.1109/CVPR.2018.00920, 2018.
- Z. C. Lipton, The mythos of model interpretability, Communications of the ACM, 61(10)(2018)36-43.
- Z. Hu, Z. Yang, X. Liang, et al., Toward controlled generation of Text, arXiv:1703.00955, 2017.
- A. Mahendran, A. Vedaldi, Understanding deep image representations by inverting them, In 2015 IEEE conference on computer vision and pattern recognition, DOI: 10.1109/CVPR.2015.7299155, 2015.
- A. Dosovitskiy, T. Brox, Inverting visual representations with convolutional networks, In 2015 IEEE conference on computer vision and pattern recognition, DOI: 10.1109/CVPR.2016.522, 2016.
- R. C. Fong, A. Vedaldi, Interpretable explanations of black boxes by meaningful perturbation, In 2017 IEEE international conference on computer vision, DOI: 10.1109/ICCV.2017.371, 2017.
- R. R. Selvaraju, M. Cogswell, A. Das, et al., Grad-cam: visual explanations from deep networks via gradient-based localization, In 2017 IEEE international conference on computer vision, DOI: 10.1109/ICCV.2017.37, 1, 2017.
- Q. Zhang, R.Cao, F. Shi, et al., Interpreting CNN knowledge via an explanatory graph, In Thirty-second AAAI conference on artificial intelligence, pp. 4454-4463, 2018.
- W. Hong, X. Yunchao, L. Dawei, et al., Rapid identification of X-ray diffraction patterns based on very limited data by interpretable convolutional neural networks, Journal of Chemical Information and Modeling, vol. 60, pp.2004-2011, 2020.
- D. Bau, B. Zhou, A. Khosla,et al., Network dissection: Quantifying interpretability of deep visual representations, In 2017 IEEE conference on computer vision and pattern recognition, DOI: 10.1109/CVPR.2017.354, 2017.
- P. Koh, P. Liang, Understanding black-box predictions via influence functions, In proceedings of the 34th international conference on machine learning, pp.1885-1894, 2017.
- H. Asanuma, Recent developments in the study of the columnar arrangement of neurons within the motor cortex, Physiological Reviews, vol. 55,pp. 143-156, pp.1975.
- E. Kandel, J. schwartz, T. Jessell, et al., Principles of neural science, 5th ed. New York, USA: McGraw-Hill, 2012.
- D. H. Hubel, T.N. Wiesel, Ferrier lecture: functional architecture of macaque monkey visual cortex, Proceedings of the Royal Society of London, vol. 198, pp. 1-59, 1977.
- K. Tanaka, Columns for complex visual object features in the inferotemporal cortex:clustering of cells with similar but slightly different stimulus selectivities, Cerebral Cortex, vol. 13, pp. 90-99, 2003.
- A. Angelucci, C. Bressloff P, Contribution of feed-forward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons, Progress in Brain Research, vol. 154, pp.93-120, 2006.
- V. A. Lamme, H. Supèr, H. Spekreijse, Feedfor-ward, horizontal, and feedback processing in the visual cortex, Current Opinion in Neurobiology, vol. 8, pp. 529, 1998.
- T. Kohonen, Self-organized formation of topologically correct feature maps, Biological Cybernetics, vol. 43, pp. 59-69,1982.
- G. Bebis, M. Georgiopoulos, N.V. Lobo, et al., Using self-organizing maps to learn geometric hash functions for model-based object recognition, IEEE Transactions on Neural Networks, vol. 9, 560-570, 1998.
- A. Y. Ng, Sparse autoencoder, CS294 A Lecture notes 72, 2011.
- G.B. Moody, R.G. Mark, The impact of the MITBIH arrhythmia database, IEEE Engineering in Medicine and Biology Magazine, vol. 20, pp. 45-50,2001.
- R. Mark, Aami-recommended practice: testing and reporting performance results of ventricular arrhythmia detection algorithms, in: Association for the Advancement of Medical Instrumentation, Arrhythmia Monitoring Subcommittee, AAMI ECAR, 1987.
- D. J. Felleman, D. Essen, Distributed hierarchical processing in the primate cerebral cortex, Cerebral Cortex, vol.1, pp. 1-47,1991.
- Z. P. Lo, M. Fujita, B. Bavarian, Analysis of neighborhood interaction in Kohonen neural networks, In IEEE fifth international proceedings parallel processing symposium, pp. 246-249,199,.
- Z. P. Lo, Y. Yu, B. Bavarian, Analysis of the convergence properties of topology preserveing neural networks. IEEE Transactions on Neural Networks, vol. 4, 207-220,1993.
- J. M. Zhang, Y. Wu, A new method for automatic sleep stage classification, IEEE Transactions on Biomedical Circuits and Systems, vol. 11, pp. 1097-1110, 2017.
- S. F. Liang, C. E. Kuo, Y. H. Hu, et al., Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models, IEEE Transactions on Instrumentation and Measurement, vol. 61, pp. 1649-1657, 2012.
- J. Cohen, A coefficient of agreement for nominal scales, Educational & Psychological Measurement, vol. 20, pp. 37-46, 1960.
- H. Zhang, C. M. Cartwright, M. S. Ding, et al., Image feature extraction with various wavelet functions in a photorefractive joint transform correlator, Optics Communications, vol. 185, pp. 277-284, 2000.
- https://cs231n.github.io/understandingcnn.
- ahilS.,http://medium.com/towards-data-science/experiences-with-a-new-kind-of-convolution-dfe603262e4c, 2017.
- M. Hammad, A. M., Iliyasu, A. Subasi, et al., A multitier deep learning model for arrhythmia detection, IEEE Transactions on Instrumentation and Measurement, DOI: 10.1109/TIM.2020.3033072, 2020.
- H. Rui, C. Jie, Z. Li, A transformer-based deep neural network for arrhythmia detection using continuous ECG signals, Computers in Biology and Medicine, DOI: https://doi.org/10-.1016/j.compbiomed.2022.105325, 2022.
- S. Mousavi, F. Afghah, F. Khadem, U.R. Acharya, Ecg language processing (elp): a new technique to analyze ecg signals, Computer Methods and Programs in Biomedicine, vol. 202, pp.105959, 2021.
- A. Chandrasekar, D. D. Shekar, A. C. Hire-math, et al., Detection of arrhythmia from electrocardiogram signals using a novel gaussian assisted signal smoothing and pattern recognition, Biomedical Signal Processing and Control, DOI: https://doi.org/10.1016/j.bspc.2021.103469, 2022.
- C. Uraab, L. Shu, A. Yh, et al., A deep convolutional neural network model to classify heartbeats, Computers in Biology and Medicine, vol. 89, pp. 389-396, 2017.
- M. Hammad, A. Maher, K. Wang, et al., Detection of abnormal heart conditions based on characteristics of ECG signals, Measurement, vol. 125, pp. 634-644, 2018.
- M. Amrani, M. Hammad, F. Jiang, et al., Very deep feature extraction and fusion for arrhythmias detection, Neural Computing and Applications, vol. 30, pp. 2047-2057, 2018.
- R. Li, X. Zhang, H. Dai, et al., Interpretability analysis of heartbeat classification based on heartbeat activity’s global sequence features and BiLSTM-attention neural network, IEEE Access, vol. 7, pp. 109870-109883, 2019.
- J. Lv, Q. Ye, Y. Sun, et al., Heart-darts: classification of heartbeats using differentiable architecture search, In 2021 International Joint Conference on Neural Networks, DOI: 10.1109/IJCNN52387.2021.9534184, 2021.