Have a personal or library account? Click to login
A Novel Approach of Voterank-Based Knowledge Graph for Improvement of Multi-Attributes Influence Nodes on Social Networks Cover

A Novel Approach of Voterank-Based Knowledge Graph for Improvement of Multi-Attributes Influence Nodes on Social Networks

Open Access
|Jun 2023

Abstract

Recently, measuring users and community influences on social media networks play significant roles in science and engineering. To address the problems, many researchers have investigated measuring users with these influences by dealing with huge data sets. However, it is hard to enhance the performances of these studies with multiple attributes together with these influences on social networks. This paper has presented a novel model for measuring users with these influences on a social network. In this model, the suggested algorithm combines Knowledge Graph and the learning techniques based on the vote rank mechanism to reflect user interaction activities on the social network. To validate the proposed method, the proposed method has been tested through homogeneous graph with the building knowledge graph based on user interactions together with influences in real-time. Experimental results of the proposed model using six open public data show that the proposed algorithm is an effectiveness in identifying influential nodes.

Language: English
Page range: 165 - 180
Submitted on: Dec 25, 2022
Accepted on: May 7, 2023
Published on: Jun 23, 2023
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Hai Van Pham, Pham Van Duong, Dinh Tuan Tran, Joo-Ho Lee, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.