Have a personal or library account? Click to login
Moving Object Detection for Complex Scenes by Merging BG Modeling and Deep Learning Method Cover

Moving Object Detection for Complex Scenes by Merging BG Modeling and Deep Learning Method

Open Access
|Jun 2023

References

  1. J. Redmon and A. Farhadi, Yolov3: An incremental improvement, arXiv preprint arXiv:1804.02767, 2018.
  2. R. Grycuk, R. Scherer, A. Marchlewska, and C. Napoli, Semantic hashing for fast solar magnetogram retrieval, Journal of Artificial Intelligence and Soft Computing Research,vol. 12, 2022.
  3. S. Ren, K. He, R. Girshick, and J. Sun, Faster rcnn: Towards real-time object detection with region proposal networks, Advances in neural information processing systems, vol. 28, 2015.
  4. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, Ssd: Single shot multibox detector, in European conference on computer vision. Springer, 2016,pp. 21–37.
  5. K. Muchtar, A. Bahri, M. Fitria, T. W. Cenggoro, B. Pardamean, A. Mahendra, M. R. Munggaran, and C.-Y. Lin, Moving pedestrian localization and detection with guided filtering, IEEE Access, vol. 10, pp. 89 181–89 196, 2022.
  6. M.-I. Georgescu, A. Barbalau, R. T. Ionescu, F. S. Khan, M. Popescu, and M. Shah, Anomaly detection in video via self-supervised and multi-task learning, in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 12 742–12 752.
  7. F. R. Valverde, J. V. Hurtado, and A. Valada, There is more than meets the eye: Self-supervised multi-object detection and tracking with sound by distilling multimodal knowledge, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 11 612–11 621.
  8. C. Stauffer and W. E. L. Grimson, Adaptive background mixture models for real-time tracking, in Proceedings. 1999 IEEE computer society conference on computer vision and pattern recognition (Cat. No PR00149), vol. 2. IEEE, 1999, pp. 246–252
  9. O. Barnich and M. Van Droogenbroeck, Vibe: a powerful random technique to estimate the background in video sequences, in 2009 IEEE international conference on acoustics, speech and signal processing. IEEE, 2009, pp. 945–948.
  10. Z. Qu, S. Yu, and M. Fu, Motion background modeling based on context-encoder, in 2016 Third International Conference on Artificial Intelligence and Pattern Recognition (AIPR). IEEE, 2016, pp. 1–5.
  11. M. Sultana, A. Mahmood, S. Javed, and S. K. Jung, Unsupervised deep context prediction for background estimation and foreground segmentation, Machine Vision and Applications, vol. 30, no. 3, pp. 375–395, 2019.
  12. Y. Tao, P. Palasek, Z. Ling, and I. Patras, Background modelling based on generative unet, in 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE, 2017, pp. 1–6.
  13. M. Babaee, D. T. Dinh, and G. Rigoll, A deep convolutional neural network for video sequence background subtraction, Pattern Recognition, vol. 76, pp. 635–649, 2018.
  14. M. Braham and M. Van Droogenbroeck, Deep background subtraction with scene-specific convolutional neural networks, in 2016 international conference on systems, signals and image processing (IWSSIP). IEEE, 2016, pp. 1–4.
  15. Y. Wang, Z. Luo, and P.-M. Jodoin, Interactive deep learning method for segmenting moving objects, Pattern Recognition Letters, vol. 96, pp. 66–75, 2017.
  16. Y. Chen, J. Wang, B. Zhu, M. Tang, and H. Lu, Pixelwise deep sequence learning for moving object detection, IEEE Transactions on Circuits and Systems for Video Technology, vol. 29, no. 9, pp. 2567–2579, 2017.
  17. Z. Hu, T. Turki, N. Phan, and J. T. Wang, A 3d atrous convolutional long short-term memory network for background subtraction, IEEE Access, vol. 6, pp. 43 450–43 459, 2018.
  18. D. Sakkos, H. Liu, J. Han, and L. Shao, Endto-end video background subtraction with 3d convolutional neural networks, Multimedia Tools and Applications, vol. 77, no. 17, pp. 23 023–23 041, 2018.
  19. B. N. Subudhi, M. K. Panda, T. Veerakumar, V. Jakhetiya, and S. Esakkirajan, Kernel-induced possibilistic fuzzy associate background subtraction for video scene, IEEE Transactions on Computational Social Systems, 2022.
  20. C. Zhao, K. Hu, and A. Basu, Universal background subtraction based on arithmetic distribution neural network, IEEE Transactions on Image Processing, vol. 31, pp. 2934–2949,2022.
  21. K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  22. N. Goyette, P.-M. Jodoin, F. Porikli, J. Konrad, and P. Ishwar, Changedetection. net: A new change detection benchmark dataset, in 2012 IEEE computer society conference on computer vision and pattern recognition workshops. IEEE, 2012, pp. 1–8.
  23. T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, Microsoft coco: Common objects in context, in European conference on computer vision. Springer, 2014, pp. 740–755.
Language: English
Page range: 151 - 163
Submitted on: Dec 1, 2022
Accepted on: May 7, 2023
Published on: Jun 23, 2023
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Chih-Yang Lin, Han-Yi Huang, Wei-Yang Lin, Hui-Fuang Ng, Kahlil Muchtar, Nadhila Nurdin, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.