Have a personal or library account? Click to login
Information Technology for Comprehensive Monitoring and Control of the Microclimate in Industrial Greenhouses Based on Fuzzy Logic Cover

Information Technology for Comprehensive Monitoring and Control of the Microclimate in Industrial Greenhouses Based on Fuzzy Logic

Open Access
|Nov 2022

References

  1. [1] FAOSTAT: Food and agriculture organization of the united nations. Available at: http://www.fao.org/faostat/en/#home [Accessed 25 May 2022].
  2. [2] W. Baudoin, A. Nersisyan, A. Shamilov, A. Hodder, D. Gutierrez, Good Agricultural Practices for greenhouse vegetable production in the South East European countries, Food and Agriculture Organization of the United Nations, Rome 2017. URL: https://www.fao.org/documents/card/ru/c/22b737e1-488e-4993-86c9-13fd3fed122f/
  3. [3] American Society of Agricultural and Biological Engineers: ANSI/ASAE EP406.4 JAN2003 (R2008) Heating, Ventilating and Cooling Greenhouses. Available at: http://materialstandard.com/wp-content/uploads/2019/07/ANSI-ASABE-EP406-4-JAN2003-R2008.pdf [Accessed 15 May 2022].
  4. [4] A. Kamilaris, A Review on the Application of Natural Computing in Environmental Informatics, In: 32nd EnviroInfo, Munchen, Germany, 2018, pp. 1–11. https://doi.org/10.48550/arXiv.1808.00260.
  5. [5] M. Erazo-Rodas, M. Sandoval-Moreno, S. Munoz-Romero, M. Huerta, D. Rivas-Lalaleo, C. Naranjo, J. Rojo-Alvarez, Multiparametric Monitoring in Equatorian Tomato Greenhouses (I): Wireless Sensor Network Benchmarking, Sensors, 18 (8), 2018, pp. 1–22. https://doi.org/10.3390/s18082555.10.3390/s18082555611137630081559
  6. [6] J. Miliauskaite, D. Kalibatiene, Complexity in Data-Driven Fuzzy Inference Systems: Survey, Classification and Perspective, Baltic J. Modern Computing, 8 (4), 2020, pp. 572–596. https://doi.org/10.22364/bjmc.2020.8.4.08.10.22364/bjmc.2020.8.4.08
  7. [7] I. Laktionov, O. Vovna, A. Zori, Copncept of low cost computerized measuring system for micro-climate parameters of greenhouses, Bulg. Journal of Agric. Sc., 23 (4), 2017, pp. 668–673. URL: https://agrojournal.org/23/04-24.pdf.
  8. [8] O. Vovna, I. Laktionov, S. Sukach, M. Kabanets, E. Cherevko. Method of adaptive control of effective energy lighting of greenhouses in the visible optical range. Bulg. Journal of Agric. Sc., 24 (2), 2018, pp. 335–340. URL: https://agrojournal.org/24/02-23.pdf.
  9. [9] I.S. Laktionov, O.V. Vovna, Y.O. Bashkov, A.A. Zori, A.A., V.A. Lebediev, Improved Computer-Oriented Method for Processing of Measurement Information on Greenhouse Microclimate, Int. J. Bioautomation, 23 (1), 2019, pp. 71–86. https://doi.org/10.7546/ijba.2019.23.1.71-86.10.7546/ijba.2019.23.1.71-86
  10. [10] I.S. Laktionov, O.V. Vovna, M.M. Kabanets, H.O. Sheina, I.A. Getman, Information model of the computer-integrated technology for wireless monitoring of the state of microclimate of industrial agricultural greenhouses, Instrumentation Mesure Metrologie, 20 (6), 2021, pp. 289 – 300. https://doi.org/10.18280/i2m.200601.10.18280/i2m.200601
  11. [11] J. Arshad, S. Saleem, M. Sana Ullah Badar, S. Khalid, Z. Mumtaz, S. Ullah, Z. Illyas, H. Ahmad Madni, An intelligent monitoring and controlling of greenhouse: Deployment of wireless sensor networks and internet-of-things, Preprints MDPI, 2019, pp. 1–13. https://doi.org/10.20944/preprints201811.0215.v1.10.20944/preprints201811.0215.v1
  12. [12] A. Touhami, B. Khelifa, L. Garcia, L. Parra, J. Lloret, B. Fateh, Sensor Network Proposal for Greenhouse Automation placed at the South of Algeria, Network Protocols and Algorithms, 10 (4), 2018, pp. 53–69. https://doi.org/10.20944/10.5296/npa.v10i4.14155.
  13. [13] S. Salvi, S.A. Pramod Jain, H.A. Sanjay, T.K. Harshita, M. Farhana, J. Naveen, M.V. Suhas, Cloud Based Data Analysis and Monitoring of Smart Multi-level Irrigation System Using IoT, In: 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 2017, pp. 752–757. https://doi.org/10.1109/I-SMAC.2017.8058279.10.1109/I-SMAC.2017.8058279
  14. [14] F. Ouyang, H. Cheng, Y. Lan, Y. Zhang, X. Yin, J. Hu, X. Peng, G. Wang, S. Chen, Automatic delivery and recovery system of Wireless Sensor Networks (WSN) nodes based on UAV for agricultural applications, Computers and Electronics in Agriculture, 162, 2019, pp. 31–43. https://doi.org/10.1016/j.compag.2019.03.025.10.1016/j.compag.2019.03.025
  15. [15] J.R. Llera, E.D. Goodman, E.S. Runkle, L. Xu, Improving greenhouse environmental control using crop-model-driven multi-objective optimization, In: Genetic and Evolutionary Computation Conference Companion (GECCO’ 18), Kyoto, Japan, 2018, pp. 292 – 293. https://doi.org/10.1145/3205651.3205724.10.1145/3205651.3205724
  16. [16] C.H. Guzman, J.L. Carrera, H.A. Duran, J. Berumen, A.A. Ortiz, O.A. Guirette, A. Arroyo, J.A. Brizuela, F. Gomez, A. Blanco, H.R. Azcaray, M. Hernandez, Implementation of Virtual Sensors for Monitoring Temperature in Greenhouses Using CFD and Control, Sensors, 19 (1), 2018, pp. 1–13. https://doi.org/10.3390/s19010060.10.3390/s19010060633902430586913
  17. [17] H. Wang, J.A. Sanchez-Molina, M. Li, F.R. Diaz, Improving the Performance of Vegetable Leaf Wetness Duration Models in Greenhouses Using Decision Tree Learning, Water, 11 (1), 2019, pp. 1–19. https://doi.org/10.3390/w11010158.10.3390/w11010158
  18. [18] J. Agajo, J.G. Kolo, G. Jonas, A.R. Opeyemi, N.O. Chikeze, O.B. Chukwujekwu, A modified web-based agro-climatic remote monitoring system via wireless sensor network, In: 2017 IEEE 3rd Int. Conf. on Electro-Technology for National Development (NIGER-CON), Owerri, Nigeria, 2018, pp. 258–270. https://doi.org/10.1109/NIGERCON.2017.8281898.10.1109/NIGERCON.2017.8281898
  19. [19] M. Azaza, K. Echaieb, E. Fabrizio, A. Iqbal, A. Mami, An intelligent system for the climate control and energy savings in agricultural greenhouses, Energy Efficiency, 9 (6), 2016, pp. 1241–1255. https://doi.org/10.1007/s12053-015-9421-8.10.1007/s12053-015-9421-8
  20. [20] Zh. Xu, J. Chen, Switching Control Strategy for Greenhouse Temperature-Humidity System Based on Prediction Modeling: A Simulation Study, Journal of Engineering and Technological Sciences, 49 (5), 2017, pp. 689–703. https://doi.org/10.20944/preprints201611.0044.v1.10.20944/preprints201611.0044.v1
  21. [21] M. Taki, Y. Ajabshirchi, S. Faramarz Ranjbar, M. Matloobi, Application of neural networks and multiple regression models in greenhouse climate estimation, AgricEngInt: CIGR Journal, 18 (3), 2016, pp. 29–43. URL: https://cigrjournal.org/index.php/Ejounral/article/view/3672/2414
  22. [22] Y. Kaneda, H. Ibayashi, N. Oishi, H. Mineno, Greenhouse Environmental Control System Based on SW-SVR, Procedia Computer Science, 60 (1), 2015, pp. 860–869. https://doi.org/10.1016/j.procs.2015.08.249.10.1016/j.procs.2015.08.249
  23. [23] T.A. Izzuddin, M.A. Johari, M.Z.A. Rashid, M.H. Jali, Smart irrigation using fuzzy logic method, ARPN Journal of Engineering and Applied Sciences, 13 (2), 2018, pp. 517–522. URL: http://www.arpnjournals.org/jeas/research_papers/rp_2018/jeas_0118_6698.pdf
  24. [24] C. Algarin, J. Cabarcas, A. Llanos, Low-Cost Fuzzy Logic Control for Greenhouse Environments with Web Monitoring, Electronics, 6 (4), 2017, pp. 1–12. https://doi.org/10.3390/electronics6040071.10.3390/electronics6040071
  25. [25] R. Ben Ali, E. Aridhi, M. Abbes, A. Mami, Fuzzy logic controller of temperature and humidity inside an agricultural greenhouse, In: 7th International Renewable Energy Congress (IREC), Hammamet, Tunis, 2016, pp. 1–6. https://doi.org/10.1109/IREC.2016.7478929.10.1109/IREC.2016.7478929
  26. [26] O. Alpay, E. Erdem, The Control of Greenhouses Based on Fuzzy Logic Using Wireless Sensor Networks, Int. J. of Computational Intelligence Systems, 12 (1), 2019, pp. 190–203. https://doi.org/10.2991/ijcis.2018.125905641.10.2991/ijcis.2018.125905641
  27. [27] A.J. Both, L. Benjamin, J. Franklin, G. Holroyd, L.D. Incoll, M.G. Lefsrud, G. Pitkin, Guidelines for measuring and reporting environmental parameters for experiments in greenhouses, Plant Methods, 11 (43), 2015, pp. 1–18. https://doi.org/10.1186/s13007-015-0083-5.10.1186/s13007-015-0083-5456783026366189
  28. [28] W. Baudoin, Good agricultural practices for greenhouse vegetable crops: Principles for mediterranean climate areas, FAO of the United Nations, Rome 2013. URL: https://agris.fao.org/agris-search/search.do?recordID=XF2013001549
Language: English
Page range: 19 - 35
Submitted on: Jun 27, 2022
Accepted on: Oct 19, 2022
Published on: Nov 28, 2022
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Ivan Laktionov, Oleksandr Vovna, Maryna Kabanets, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.