Have a personal or library account? Click to login
Detecting Anomalies in Advertising Web Traffic with the Use of the Variational Autoencoder Cover

Detecting Anomalies in Advertising Web Traffic with the Use of the Variational Autoencoder

Open Access
|Oct 2022

References

  1. [1] Recaptcha https://www.google.com/recaptcha/about/
  2. [2] Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. “Deep learning”. MIT press, 2016.
  3. [3] Zhou, Chong, and Randy C. Paffenroth. “Anomaly detection with robust deep autoencoders.” Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, 2017.10.1145/3097983.3098052
  4. [4] Farahnakian, Fahimeh, and Jukka Heikkonen. “A deep auto-encoder based approach for intrusion detection system.” 2018 20th International Conference on Advanced Communication Technology (ICACT). IEEE, 2018.10.23919/ICACT.2018.8323687
  5. [5] Q.P.Nguyen i in., GEE: A Gradient-based Explainable Variational Autoencoder for Network Anomaly Detection, 2019.10.1109/CNS.2019.8802833
  6. [6] https://www.emarketer.com/content/digital-ad-fraud-2019, 2019
  7. [7] Barker S., “Future Digital Advertising, Artificial Intelligence & Advertising Fraud 2019-2023”, Juniper Research, 2019
  8. [8] Xiong, Yihui, and Renguang Zuo. “Recognition of geochemical anomalies using a deep autoencoder network.” Computers & Geosciences 86 (2016): 75-82.10.1016/j.cageo.2015.10.006
  9. [9] Gabryel, Marcin, Konrad Grzanek, and Yoichi Hayashi. “Browser fingerprint coding methods increasing the effectiveness of user identification in the web traffic.” Journal of Artificial Intelligence and Soft Computing Research 10 (2020).10.2478/jaiscr-2020-0016
  10. [10] Gabryel, Marcin, et al. “Decision making support system for managing advertisers by ad fraud detection.” Journal of Artificial Intelligence and Soft Computing Research 11 (2021).10.2478/jaiscr-2021-0020
  11. [11] Kim, Taegong, and Cheong Hee Park. “Anomaly Pattern Detection in Streaming Data Based on the Transformation to Multiple Binary-Valued Data Streams.” Journal of Artificial Intelligence and Soft Computing Research 12.1 (2022): 19-27.10.2478/jaiscr-2022-0002
  12. [12] Brunner, Csaba, Andrea K˝o, and Szabina Fodor. “An Autoencoder-Enhanced Stacking Neural Network Model for Increasing the Performance of Intrusion Detection.” Journal of Artificial Intelligence and Soft Computing Research 12.2 (2022): 149-163.10.2478/jaiscr-2022-0010
  13. [13] Santhosh, Kelathodi Kumaran, et al.”Vehicular trajectory classification and traffic anomaly detection in videos using a hybrid CNN-VAE Architecture”. IEEE Transactions on Intelligent Transportation Systems, 2021.
  14. [14] Wang, Tian, et al. Generative neural networks for anomaly detection in crowded scenes. IEEE Transactions on Information Forensics and Security, 2018, 14.5: 1390-1399.10.1109/TIFS.2018.2878538
  15. [15] Zhou, Yu, et al. VAE-based Deep SVDD for anomaly detection”. Neurocomputing, 2021, 453: 131-140.10.1016/j.neucom.2021.04.089
  16. [16] An, Jinwon; Cho, Sungzoon. Variational autoen-coder based anomaly detection using reconstruction probability”. Special Lecture on IE, 2015, 2.1: 1-18.
  17. [17] Pang, Guansong, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel. “Deep Learning for Anomaly Detection: A Review.” ACM Computing Surveys (CSUR) 54, no. 2 (2021): 1–38.10.1145/3439950
  18. [18] Kingma, Diederik P.; Welling, Max. Auto-encoding variational Bayes”. arXiv preprint arXiv:1312.6114, 2014.
  19. [19] Tadeusz Inglot, Information Theory in the mathematical Statistics”, Mathematica Applicanda”, 42 (1), 2014, pp. 115–17410.14708/ma.v42i1.521
  20. [20] Gabryel, Marcin, Lada, Dawid, Kocic, Milan “Autoencoder Neural Network for Detecting Non-human Web Traffic”, ICAISC 2022, LNCS, Springer, accepted for printing.10.1007/978-3-031-23480-4_19
  21. [21] Zhao, Fangzhen, et al. “A Uniform Framework for Anomaly Detection in Deep Neural Networks.” Neural Processing Letters (2022): 1-22.
  22. [22] J. Bilski, B. Kowalczyk, A. Marjański, M. Gandor, J. ˙Zurada, “A Novel Fast Feedforward Neural Networks Training Algorithm”, Journal of Artificial Intelligence and Soft Computing Research, Vol.11, No. 4, 287-306 (2021), DOI: 10.2478/jaiscr-2021-001710.2478/jaiscr-2021-0017
Language: English
Page range: 255 - 256
Submitted on: Apr 2, 2022
|
Accepted on: Oct 12, 2022
|
Published on: Oct 29, 2022
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Marcin Gabryel, Dawid Lada, Zbigniew Filutowicz, Zofia Patora-Wysocka, Marek Kisiel-Dorohinicki, Guang Yi Chen, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.