Have a personal or library account? Click to login
Performance Analysis of Data Fusion Methods Applied to Epileptic Seizure Recognition Cover

Performance Analysis of Data Fusion Methods Applied to Epileptic Seizure Recognition

Open Access
|Oct 2021

References

  1. [1] S.L. Moshé, E. Perucca, P. Ryvlin, T. Tomson. Epilepsy: New advances. Lancet. 385:884-898, 2015. doi: 10.1016/S0140-6736(14)60456-6.10.1016/S0140-6736(14)60456-6
  2. [2] F. Leijten. Multimodal seizure detection: A review. Epilepsia. 59:42-47, 2018. doi: 10.1111/epi.14047.10.1111/epi.1404729873832
  3. [3] D. Sukumaran, Y. Enyi, S. Sun, A. Basu, D. Zhao, J. Dauwels. A low-power, reconfigurable smart sensor system for EEG acquisition and classification; Proceedings of the 2012 IEEE Asia Pacific Conference on Circuits and Systems; Kaohsiung, Taiwan, pp. 9-12, 2-5 December 2012.10.1109/APCCAS.2012.6418958
  4. [4] T.M.E. Nijsen, R.M. Aarts, P.J.M. Cluitmans, P.A.M. Griep. Time-Frequency Analysis of Accelerometry Data for Detection of Myoclonic Seizures. IEEE Trans. Inf. Technol. Biomed. 14:1197-1203, 2010. doi: 10.1109/TITB.2010.2058123.10.1109/TITB.2010.205812320667813
  5. [5] H. Chen, M. Xue, Z. Mei, S.B. Oetomo, W. Chen. A Review of Wearable Sensor Systems for Monitoring Body Movements of Neonates. Sensors. 16:2134, 2016. doi: 10.3390/s16122134.10.3390/s16122134519111427983664
  6. [6] J.L. Andreassi. Psychophysiology: Human behavior and physiological response (Fifth ed.). Mahwah, NJ: Lawrence Erlbaum Associates, 2006.
  7. [7] J. Coosemans, B. Hermans, R. Puers. Integrating wireless ECG monitoring in textiles; Proceedings of the International Conference on Solid-State Sensors, Actuators and Microsystems; pp. 228-232. Digest of Technical Papers, Transducers, Seoul, Korea. 5-9 June 2005.10.1109/SENSOR.2005.1496399
  8. [8] B. Yang, C. Yu, Y. Dong. Capacitively Coupled Electrocardiogram Measuring System and Noise Reduction by Singular Spectrum Analysis. IEEE Sens. J. 16:3802-3810, 2016. doi: 10.1109/JSEN.2016.2532599.10.1109/JSEN.2016.2532599
  9. [9] H.C. Jung, J.H. Moon, D.H. Baek, J.H. Lee, Y.Y. Choi, J.S. Hong, S.H. Lee. CNT/PDMS composite flexible dry electrodes for long-term ECG monitoring. IEEE Trans. Biomed. Eng. 59:1472-1479, 2012. doi: 10.1109/TBME.2012.2190288.10.1109/TBME.2012.219028822410324
  10. [10] M.A. Yokus, J.S. Jur. Fabric-Based Wearable Dry Electrodes for Body Surface Biopotential Recording. IEEE Trans. Bio-Med. Eng. 63:423-430, 2016. doi: 10.1109/TBME.2015.2462312.10.1109/TBME.2015.246231226241969
  11. [11] R. Lei, Q. Jiang, K. Chen, Z. Chen, C. Pan, L. Jiang. Fabrication of a Micro-Needle Array Electrode by Thermal Drawing for Bio-Signals Monitoring. Sensors. 16:908, 2016.10.3390/s16060908493433427322278
  12. [12] S.S. Spencer. MRI, SPECT, and PET imaging in epilepsy: Their relative contributions. Epilepsia. 35:S72-S89, 1994. doi: 10.1111/j.1528-1157.1994.tb05990.x.10.1111/j.1528-1157.1994.tb05990.x8206016
  13. [13] C.Á. Szabó, L.C. Morgan, K.M. Karkar, L.D. Leary, O.V. Lie, M. Girouard, J.E. Cavazos. Electromyography-based seizure detector: Preliminary results comparing a generalized tonic-clonic seizure detection algorithm to video-EEG recordings. Epilepsia. 56:1432-1437, 2015. doi: 10.1111/epi.13083.10.1111/epi.1308326190150
  14. [14] Y. Gu, E. Cleeren, J. Dan, K. Claes, W.V. Paesschen, S.V. Huffel, B. Hunyadi. Comparison between Scalp EEG and Behind-the-Ear EEG for Development of a Wearable Seizure Detection System for Patients with Focal Epilepsy. Sensors. 18:29, 2018. doi: 10.3390/s18010029.10.3390/s18010029579588429295522
  15. [15] C. Shi, X. Kong, P. Yu, B. Wang, Multi-label Ensemble Learning, in Machine Learning and Knowledge Discovery in Databases, Springer Berlin Heidelberg, 2011.10.1007/978-3-642-23808-6_15
  16. [16] Y. Wang, Z. Li, L. Feng, H. Bai, C. Wang. Hardware design of multiclass SVM classification for epilepsy and epileptic seizure detection. IET Circuits Devices Syst. 12:108-115, 2018. doi: 10.1049/iet-cds.2017.0216.10.1049/iet-cds.2017.0216
  17. [17] Q. He, B. Wu, H. Wang, L. Zhu. VEP Feature Extraction and Classification for Brain-Computer Interface; Proceedings of the 8th International Conference on Signal Processing; Guilin, China. 16-20 November 2006.10.1109/ICOSP.2006.345943
  18. [18] B.E. Boser, I.M. Guyon, V.N. Vapnik. A Training Algorithm for Optimal Margin Classifiers; Proceedings of the Annual Workshop on Computational Learning Theory; Pittsburgh, PA, USA, pp. 144-152. 27-29 July 1992.10.1145/130385.130401
  19. [19] K. Fu, J. Qu, Y. Chai, T. Zou. Hilbert marginal spectrum analysis for automatic seizure detection in EEG signals. Biomed. Signal Process. Control. 18:179-185, 2015. doi: 10.1016/j.bspc.2015.01.002.10.1016/j.bspc.2015.01.002
  20. [20] K.D. Brabanter, P. Karsmakers, F. Ojeda, C. Alzate, J.D. Brabanter, K. Pelckmans, B.D. Moor, J. Vandewalle, J.A.K. Suykens. LS-SVMlab Tool-box User’s Guide: Version 1.7. Ku Leuven Leuven; Leuven, Belgium: 2010.
  21. [21] Y.C. Liu, C.C.K. Lin, T. Jing-Jane, Y.N. Sun. Model-Based Spike Detection of Epileptic EEG Data. Sensors. 13:12536-12547, 2013. doi: 10.3390/s130912536.10.3390/s130912536382132524048343
  22. [22] D.H. Wolpert, W.G. Macready, No Free Lunch Theorems for Optimization, IEEE Transactions on Evolutionary Computation 1, 67, 1997.10.1109/4235.585893
  23. [23] R.M. Isa, I. Pasya, M.N. Taib, A.H. Jahidin, W.R.W. Omar, N. Fuad, H. Norhazman. EEG brainwave behaviour due to RF Exposure using kNN classification; Proceedings of the IEEE International Conference on System Engineering and Technology; Shah Alam, Malaysia. 19-20 August, pp. 385-388, 2013.10.1109/ICSEngT.2013.6650205
  24. [24] R. Chai, Y. Tran, G.R. Naik, T.N. Nguyen, S.H. Ling, A. Craig, H.T. Nguyen. Classification of EEG based-mental fatigue using principal component analysis and Bayesian neural network; Proceedings of the Engineering in Medicine and Biology Society; p. 4654, Orlando, FL, USA, 16-20 August 2016.10.1109/EMBC.2016.7591765
  25. [25] I. Kiral-Kornek, S. Roy, E. Nurse, B. Mashford, P. Karoly, T. Carroll, D. Payne, S. Saha, S. Baldassano, T. O’Brien, D. Grayden. Epileptic seizure prediction using big data and deep learning: toward a mobile system. EBioMedicine, 27, pp.103-111. Vancouver, 2018.10.1016/j.ebiom.2017.11.032582836629262989
  26. [26] A. Antoniades, L. Spyrou, C.C. Took, S. Sanei. Deep learning for epileptic intracranial EEG data. In 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP) (pp. 1-6). IEEE, 2016.10.1109/MLSP.2016.7738824
  27. [27] P. Thodoroff, J. Pineau, A. Lim. Learning robust features using deep learning for automatic seizure detection. In Machine learning for healthcare conference (pp. 178-190), 2016.
  28. [28] H. Liu, L. Xi, Y. Zhao, Z. Li. Using Deep Learning and Machine Learning to Detect Epileptic Seizure with Electroencephalography (EEG) Data, arXiv, eprint:1910.02544, 2019.10.11648/j.mlr.20190403.11
  29. [29] S. A. Ludwig, Epileptic Seizure Recognition: Deep Neural Network Ensemble versus Choquet Fuzzy Integral Fusion, 2020 IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, Australia, 2020.10.1109/SSCI47803.2020.9308541
  30. [30] A. Graves, M. Liwicki, S. Fernndez, R. Bertolami, H. Bunke, J. Schmidhuber, A novel connectionist system for unconstrained handwriting recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(5), 855-868, 2009.10.1109/TPAMI.2008.13719299860
  31. [31] A. Graves, A. R. Mohamed, G. Hinton, Speech recognition with deep recurrent neural networks. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 6645-6649, 2013.10.1109/ICASSP.2013.6638947
  32. [32] K. Kourou, et al. Machine learning applications in cancer prognosis and prediction. Computational and structural biotechnology journal 13, 8-17, 2015.10.1016/j.csbj.2014.11.005434843725750696
  33. [33] S. Aiello et al. Machine Learning with Python and H20. H2O. ai Inc., 2016.
  34. [34] B.V. Dasarathy and B.V. Sheela, Composite classifier system design: concepts and methodology, Proceedings of the IEEE, vol. 67, no. 5, pp. 708-713, 1979.10.1109/PROC.1979.11321
  35. [35] L.K. Hansen and P. Salamon, Neural network ensembles, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 10, pp. 993-1001, 1990.10.1109/34.58871
  36. [36] R.E. Schapire, The Strength of Weak Learnability, Machine Learning, vol. 5, no. 2, pp. 197-227, 1990.10.1007/BF00116037
  37. [37] G. Seni, J.F. Elder. Ensemble Methods in Data Mining: Improving Accuracy Through Combining Predictions. In Grossman, R., ed.: Synthesis Lectures on Data Mining and Knowledge Discovery. Morgan & Claypool, 2010.10.1007/978-3-031-01899-2
  38. [38] T. Chen, C. Guestrin. XGBoost: A Scalable Tree Boosting System. In Krishnapuram, Balaji; Shah, Mohak; Smola, Alexander J.; Aggarwal, Charu C.; Shen, Dou; Rastogi, Rajeev (eds.). Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016. ACM. pp. 785-794, 2016.10.1145/2939672.2939785
  39. [39] J. Xie, V. Rojkova, S. Pal, S. Coggeshall. A Combination of Boosting and Bagging for KDD Cup 2009 - Fast Scoring on a Large Database. The Journal of Machine Learning Research (JMLR) 7, 35-43, 2009.
  40. [40] M. Sugeno, Theory of fuzzy integrals and its applications, Ph.D. thesis, Tokyo Institute of Technology, 1974.
  41. [41] G. Choquet, Theory of capacities, in Annales de l’institut Fourier, vol. 5. Institut Fourier, 1954, pp. 131-295.10.5802/aif.53
  42. [42] M. Grabisch, H.T. Nguyen, and E.A. Walker, Fundamentals of uncertainty calculi with applications to fuzzy inference. Springer Science & Business Media, 2013, vol. 30.
  43. [43] D.T. Anderson, T.C. Havens, C. Wagner, J.M. Keller, M.F. Anderson, and D.J. Wescott, Extension of the fuzzy integral for general fuzzy set-valued information, IEEE Trans. Fuzzy Syst., vol. 22, no. 6, pp. 1625-1639, 2014.10.1109/TFUZZ.2014.2302479
  44. [44] D.T. Anderson et al., Binary fuzzy measures and Choquet integration for multi-source fusion, International Conference on Military Technologies (ICMT), Brno, 2017, pp. 676-681, 2017.10.1109/MILTECHS.2017.7988843
  45. [45] A. Galusha, J. Dale, J.M. Keller and A. Zare, Deep convolutional neural network target classification for underwater synthetic aperture sonar imagery, in Proc. SPIE 11012, Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXIV, 1101205, May 2019.10.1117/12.2519521
  46. [46] J.M. Keller, D. Liu, D.B. Fogel, [Fundamentals of Computational Intelligence], John Wiley & Sons, Inc., Hoboken, New Jersey, 2016.
  47. [47] R.G. Andrzejak, K. Lehnertz, C. Rieke, F. Mormann, P. David, C.E. Elger. Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state, Phys. Rev. E, 64, 061907, 2001.10.1103/PhysRevE.64.06190711736210
Language: English
Page range: 5 - 17
Submitted on: Jun 30, 2020
Accepted on: Jun 24, 2021
Published on: Oct 8, 2021
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Simone A. Ludwig, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.