References
- [1] J. R. Jang and C. T. Sun, “Functional equivalence between radial basis function networks and fuzzy inference systems,” IEEE Trans Neural Netw, vol. 4, no. 1, pp. 156–159, 1993.10.1109/72.18271018267716
- [2] A. Przybył and M. J. Er, “The method of hardware implementation of fuzzy systems on FPGA,” in Artificial Intelligence and Soft Computing (L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L. A. Zadeh, and J. M. Zurada, eds.), (Cham), pp. 284–298, Springer International Publishing, 2016.10.1007/978-3-319-39378-0_25
- [3] A. Przybył, Algorytmy inteligencji obliczeniowej dla rozproszonych środowisk sieciowych. EXIT, 2017.
- [4] A. Przybył and M. J. Er, “A method for design of hardware emulators for a distributed network environment,” in Artificial Intelligence and Soft Computing (L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L. A. Zadeh, and J. M. Zurada, eds.), (Cham), pp. 318–336, Springer International Publishing, 2017.10.1007/978-3-319-59060-8_29
- [5] J. Detrey and F. de Dinechin, “Parameterized floating-point logarithm and exponential functions for FPGAs,” Microprocessors and Microsystems, vol. 31, no. 8, pp. 537–545, 2007. Special Issue on FPGA-based Reconfigurable Computing (3).10.1016/j.micpro.2006.02.008
- [6] P. Echeverria and M. Lopez-Vallejo, “An FPGA implementation of the powering function with single precision floating-point arithmetic,” in High Performance Digital Design in Reconfigurable Architectures, pp. 17–26, 8th Conference on Real Numbers and Computers, 2008.
- [7] J. Kluska and Z. Hajduk, “Hardware implementation of P1-TS fuzzy rule-based systems on FPGA,” in Artificial Intelligence and Soft Computing, 12th International Conference, ICAISC, Part I, vol. 7894, pp. 282–293, 2013.
- [8] J.-Y. Jhang, K.-H. Tang, C.-K. Huang, C.-J. Lin, and K.-Y. Young, “FPGA implementation of a functional neuro-fuzzy network for nonlinear system control,” Electronics, vol. 7, no. 8, 2018.10.3390/electronics7080145
- [9] M. Dendaluce Jahnke, F. Cosco, R. Novickis, J. Pérez Rastelli, and V. Gomez-Garay, “Efficient neural network implementations on parallel embedded platforms applied to real-time torque-vectoring optimization using predictions for multi-motor electric vehicles,” Electronics, vol. 8, no. 2, 2019.10.3390/electronics8020250
- [10] A. Brown, P. Kelly, and W. Luk, “Profiling floating point value ranges for reconfigurable implementation,” 01 2007.
- [11] A. Agrawal, J. Choi, K. Gopalakrishnan, S. Gupta, R. Nair, J. Oh, D. A. Prener, S. Shukla, V. Srinivasan, and Z. Sura, “Approximate computing: Challenges and opportunities,” in 2016 IEEE International Conference on Rebooting Computing (ICRC), pp. 1–8, 2016.10.1109/ICRC.2016.7738674
- [12] D. Han, S. Zhou, T. Zhi, Y. Wang, and S. Liu, “Float-fix: An efficient and hardware-friendly data type for deep neural network,” International Journal of Parallel Programming, vol. 47, no. 3, pp. 345–359, 2019.10.1007/s10766-018-00626-7
- [13] A. Przybył and J. Szczypta, “Method of evolutionary designing of FPGA-based controllers,” Przegląd Elektrotechniczny, vol. 92, no. 7, pp. 174–179, 2016.10.15199/48.2016.07.38
- [14] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43, IEEE, 1995.
- [15] P. Dziwiński and Ł. Bartczuk, “A new hybrid particle swarm optimization and genetic algorithm method controlled by fuzzy logic,” IEEE Transactions on Fuzzy Systems, vol. 28, no. 6, pp. 1140–1154, 2019.
- [16] P. Dziwiński, Ł. Bartczuk, and J. Paszkowski, “A new auto adaptive fuzzy hybrid particle swarm optimization and genetic algorithm,” Journal of Artificial Intelligence and Soft Computing Research, vol. 10, pp. 95–111, 2020.10.2478/jaiscr-2020-0007
- [17] K. Łapa, K. Cpałka, Ł. Laskowski, A. Cader, and Z. Zeng, “Evolutionary algorithm with a configurable search mechanism,” Journal of Artificial Intelligence and Soft Computing Research, vol. 10, pp. 151–171, 2020.10.2478/jaiscr-2020-0011