Have a personal or library account? Click to login
Learning Novelty Detection Outside a Class of Random Curves with Application to COVID-19 Growth Cover

Learning Novelty Detection Outside a Class of Random Curves with Application to COVID-19 Growth

Open Access
|May 2021

References

  1. [1] C. Abraham, G. Biau, and B. Cadre, On the kernel rule for function classification, Annals of the Institute of Statistical Mathematics, 58(May 2005): 619–633, 2006.10.1007/s10463-006-0032-1
  2. [2] TW. Anderson, The Statistical Analysis of Time Series, Wiley Online Library, 1971.
  3. [3] G. Aneiros, E. Bongiorno, R. Cao, P. Vieu, et al, Functional statistics and related fields. Springer, Cham 2017.10.1007/978-3-319-55846-2
  4. [4] G. Biau, F. Bunea, and M. Wegkamp, Functional classification in hilbert spaces. IEEE Transactions on Information Theory, 51(6): 2163–2172, 2005.10.1109/TIT.2005.847705
  5. [5] P. Bickel and K. Doksum, Mathematical statistics: basic ideas and selected topics, volume I, volume 117. CRC Press,Boca Raton 2015.10.1201/b19822
  6. [6] W. Bock, B. Adamik, M. Bawiec, V. Bezborodov, M. Bodych, J. Burgard, T. Goetz, T. Krueger, A. Migalska, B.a Pabjan, T. Ożański, E. Rafajłowicz, W. Rafajłowicz, E. Skubalska-Rafajłowicz, S. Ryfczyńska, E. Szczureki, and P. Szymański, Mitigation and herd immunity strategy for COVID-19 is likely to fail, medRxiv, 2020.10.1101/2020.03.25.20043109
  7. [7] V. Britanak, P. Yip, and K. Rao, Discrete cosine and sine transforms: general properties, fast algorithms and integer approximations, Elsevier, Oxford, 2010.
  8. [8] D. Clifton, S. Hugueny, and L. Tarassenko, A comparison of approaches to multivariate extreme value theory for novelty detection, In: IEEE Workshop on Statistical Signal Processing Proceedings, pages 13–16, 2009.10.1109/SSP.2009.5278652
  9. [9] A. Cuevas, A partial overview of the theory of statistics with functional data, Journal of Statistical Planning and Inference, 147: 1–23, 2014.10.1016/j.jspi.2013.04.002
  10. [10] A. Cuevas, M. Febrero, and R. Fraiman, Robust estimation and classification for functional data via projection-based depth notions, Computational Statistics, 22(3): 481–496, 2007.10.1007/s00180-007-0053-0
  11. [11] L. Devroye, L. Gyorfi, and G. Lugosi, A probabilistic theory of pattern recognition, volume 31. Springer Science & Business Media, New York 2013.
  12. [12] L. Devroye and G. Lugosi, Almost sure classification of densities, Journal of Nonparametric Statistics, 14(6): 675–698, 2002.10.1080/10485250215323
  13. [13] P. Duda, K. Przybyszewski, and L. Wang, A novel drift detection algorithm based on features’ importance analysis in a data streams environment, Journal of Artificial Intelligence and Soft Computing Research, 10(4): 287–298, 2020.10.2478/jaiscr-2020-0019
  14. [14] P. Duda, L. Rutkowski, M. Jaworski, and D. Rutkowska, On the parzen kernel-based probability density function learning procedures over time-varying streaming data with applications to pattern classification, IEEE Transactions on Cybernetics, 50(4), 2018.10.1109/TCYB.2018.2877611
  15. [15] P. Duda, L. Rutkowski, M. Jaworski, and D. Rutkowska, On the Parzen Kernel-Based Probability Density Function Learning Procedures Over Time-Varying Streaming Data With Applications to Pattern Classification, IEEE Trans. on Cybernetics, 50(4): 1683–1696, 2020.10.1109/TCYB.2018.2877611
  16. [16] A. Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant, A general lower bound on the number of examples needed for learning, Information and Computation, 82: 247–261, 1989.10.1016/0890-5401(89)90002-3
  17. [17] F. Ferraty and P. Vieu, Nonparametric functional data analysis: theory and practice, Springer Science & Business Media, New York 2006.
  18. [18] Ralph Foorthuis, On the nature and types of anomalies: A review, arXiv preprint arXiv: 2007.15634, 2020.
  19. [19] European Centre for Disease Prevention and Control, Data on the geographic distribution of covid-19 cases worldwide.
  20. [20] P. Galeano, J. Esdras, and R. Lillo, The mahalanobis distance for functional data with applications to classification, Technometrics, 57(2): 281–291, 2015.10.1080/00401706.2014.902774
  21. [21] T. Gałkowski, A. Krzyżak, and Z. Filutowicz, A new approach to detection of changes in multidimensional patterns, Journal of Artificial Intelligence and Soft Computing Research, 10(2):125–136, 2020.10.2478/jaiscr-2020-0009
  22. [22] T. Galkowski and L. Rutkowski, Nonparametric Fitting of Multivariate Functions, IEEE Transactions on Automatic Control, 31(8): 785–787, 1986.10.1109/TAC.1986.1104399
  23. [23] F. Gouin, C. Ancourt, and C. Guettier, Three-wise: A local variance algorithm for GPU, Proceedings - 19th IEEE International Conference on Computational Science and Engineering, 14th IEEE International Conference on Embedded and Ubiquitous Computing and 15th International Symposium on Distributed Computing and Applications to Business, Engineering and Science, CSE-EUC-DCABES 2016, pages 257–262, 2017.10.1109/CSE-EUC-DCABES.2016.194
  24. [24] W. Greblicki, Pattern recognition procedures with nonparametric density estimates, IEEE Transactions on Systems, Man and Cybernetics, 8: 809–812, 1978.10.1109/TSMC.1978.4309869
  25. [25] W. Greblicki and M. Pawlak, Classification using the Fourier series estimate of multivariate density functions, IEEE Transactions on Systems, Man and Cybernetics, 11: 726–730, 1981.10.1109/TSMC.1981.4308594
  26. [26] W. Greblicki and M. Pawlak, Fourier and {H}ermite series estimates of regression functions, Ann. Inst. Stat. Math., 37: 443–454, 1985.10.1007/BF02481112
  27. [27] L. Gyorfi, M. Kohler, A. Krzyzak, and H. Walk, A Distribution-Free Theory of Nonparametric Regression, Springer, New York, 2002.10.1007/b97848
  28. [28] T. Harris, D. Tucker, B. Li, and L. Shand, Elastic depths for detecting shape anomalies in functional data, Technometrics, pages 1–11, 2020.10.1080/00401706.2020.1811156
  29. [29] D. Haussler, M. Kearns, H Sebastian Seung, and N. Tishby, Rigorous learning curve bounds from statistical mechanics, Machine Learning, 25(2-3): 195–236, 1996.10.1007/BF00114010
  30. [30] W. Homenda, A. Jastrzębska, W. Pedrycz, and F. Yu, Combining classifiers for foreign pattern rejection, Journal of Artificial Intelligence and Soft Computing Research, 10(2): 75–94, 2020.10.2478/jaiscr-2020-0006
  31. [31] L. Horváth and P. Kokoszka, Inference for functional data with applications, volume 200, Springer Science & Business Media, 2012.10.1007/978-1-4614-3655-3
  32. [32] J. Jurečková and J. Kalina, Nonparametric multivariate rank tests and their unbiasedness, Bernoulli, 18(1): 229–251, 2012.10.3150/10-BEJ326
  33. [33] W C M Kallenberg, T Ledwina, and E Rafajlowicz, Testing bivariate independence and normality, Sankhya: The Indian Journal of Statistics, Series A, 59(1): 42–59, 1997.
  34. [34] M. Kemmler, E. Rodner, E. Wacker, and J. Denzler, One-class classification with Gaussian processes, Pattern Recognition, 46(12): 3507–3518, 2013.10.1016/j.patcog.2013.06.005
  35. [35] J. T. Kwok, I. W. Tsang, and J. M Zurada, A class of single-class minimax probability machines for novelty detection, IEEE Transactions on Neural Networks, 18(3): 778–785, 2007.10.1109/TNN.2007.89119117526343
  36. [36] N. Ling and P. Vieu, Nonparametric modelling for functional data: selected survey and tracks for future, Statistics, 52(4): 934–949, 2018.10.1080/02331888.2018.1487120
  37. [37] M. Markou and S. Singh, Novelty detection: A review - Part 2:: Neural network based approaches, Signal Processing, 83(12): 2499–2521, 2003.10.1016/j.sigpro.2003.07.019
  38. [38] M. Markou and S. Singh, Novelty detection: a review—part 1: statistical approaches, Signal Processing, 83(12): 2481–2497, 2003.10.1016/j.sigpro.2003.07.018
  39. [39] J. Marron, J. Ramsay, L. Sangalli, and A. Srivastava, Functional data analysis of amplitude and phase variation, Statistical Science, 30(4): 468–484, 2015.10.1214/15-STS524
  40. [40] J. S. Marron, J. Ramsay, L. Sangalli, and A. Srivastava, Functional data analysis of amplitude and phase variation, Statistical Science, 30(4): 468–484, 2015.10.1214/15-STS524
  41. [41] D. Montgomery, Introduction to statistical quality control, John Wiley & Sons New York, 2009.
  42. [42] H-G Mueller et al, Peter Hall, functional data analysis and random objects, The Annals of Statistics, 44(5): 1867–1887, 2016.10.1214/16-AOS1492
  43. [43] K. Patan, M. Witczak, and J. Korbicz, Towards robustness in neural network based fault diagnosis, International Journal of Applied Mathematics and Computer Science, 18(4): 443–454, 2008.10.2478/v10006-008-0039-2
  44. [44] S. Perera and J. Liu, Complexity reduction, self/completely recursive, radix-2 dct i/iv algorithms, Journal of Computational and Applied Mathematics, 379: 112936, 2020.10.1016/j.cam.2020.112936
  45. [45] E. Rafajłowicz and Schwabe R, Halton and Hammersley sequences in multivariate nonparametric regression, Statistics and Probability Letters, 76(8): 803–812, 2006.10.1016/j.spl.2005.10.014
  46. [46] E. Rafajłowicz and R. Schwabe, Equidistributed designs in nonparametric regression, Statistica Sinica, 13(1), 2003.
  47. [47] E. Rafajłowicz and E. Skubalska-Rafajłowicz, FFT in calculating nonparametric regression estimate based on trigonometric series, Journal of Applied Mathematics and Computer and Computer Science, 3(4): 713–720, 1993.
  48. [48] E. Rafajłowicz and A. Steland, A binary control chart to detect small jumps, Statistics, 43(3): 295–311, 2009.10.1080/02331880802379405
  49. [49] E. Rafajłowicz and A. Steland, The Hotelling—Like T2 Control Chart Modified for Detecting Changes in Images having the Matrix Normal Distribution, In Springer Proceedings in Mathematics and Statistics, volume 294, pages 193–206, 2019.10.1007/978-3-030-28665-1_14
  50. [50] E. Rafajłowicz, Nonparametric orthogonal series estimators of regression: a class attaining the optimal convergence rate in L2, Statistics and Probability Letters, 5: 219–224, 1987.10.1016/0167-7152(87)90044-7
  51. [51] J. Ramsay and B. Silverman, Applied functional data analysis: methods and case studies, Springer, 2007.
  52. [52] D. Rutkowska and L. Rutkowski, On the Hermite series-based generalized regression neural networks for stream data mining, In: International Conference on Neural Information Processing, pages 437–448. Springer, 2019.10.1007/978-3-030-36718-3_37
  53. [53] L. Rutkowski, A general approach for nonparametric fitting of functions and their derivatives with applications to linear circuits identification, IEEE Transactions on Circuits and Systems, 33(8): 812–818, 1986.10.1109/TCS.1986.1086001
  54. [54] L. Rutkowski, M. Jaworski, and P. Duda, Stream data mining: algorithms and their probabilistic properties, Springer, Cham, 2020.10.1007/978-3-030-13962-9
  55. [55] L. Rutkowski and E. Rafajłowicz, On optimal global rate of convergence of some nonparametric identification procedures, IEEE Trans. Automatic Control, AC-34: 1089–1091, 1989.10.1109/9.35283
  56. [56] S. Sameer and M. Markou, An approach to novelty detection applied to the classification of image regions, IEEE Transactions on Knowledge and Data Engineering, 16(4): 396–407, 2004.10.1109/TKDE.2004.1269665
  57. [57] R. Serfling. Approximation theorems of mathematical statistics, volume 162. John Wiley & Sons, New York 2009.
  58. [58] E. Skubalska-Rafajłowicz, One-dimensional Kohonen’s Lvq nets for multidimensional patterns recognition, International Journal of Applied Mathematics and Computer Science, 10(4): 767–778, 2000.
  59. [59] E. Skubalska-Rafajlowicz, Pattern recognition algorithms based on space-filling curves and orthogonal expansions, IEEE Transactions on Information Theory, 47(5): 1915–1927, 2001.10.1109/18.930927
  60. [60] E. Skubalska-Rafajłowicz, Random projection RBF nets for multidimensional density estimation, International Journal of Applied Mathematics and Computer Science, 18(4): 455–464, 2008.10.2478/v10006-008-0040-9
  61. [61] E. Skubalska-Rafajlowicz and A. Krzyzak, Fast k-NN classification rule using metric on space-filling curves, In Proceedings of 13th International Conference on Pattern Recognition, volume 2, pages 121–125. IEEE, 1996.10.1109/ICPR.1996.546736
  62. [62] A. Srivastava and E. Klassen, Functional and shape data analysis, volume 1, Springer, Cham, 2016.10.1007/978-1-4939-4020-2_1
  63. [63] A. Srivastava, E. Klassen, S. Joshi, and I. Jermyn, Shape Analysis of Elastic Curves in Euclidean Spaces, IEEE Journal on Selected Areas in Communications, 10(2): 391–400, 1992.
  64. [64] A. Srivastava, E. Klassen, S. Joshi, and I. Jermyn, Shape analysis of elastic curves in Euclidean spaces, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(7): 1415–1428, 2010.10.1109/TPAMI.2010.18420921581
  65. [65] A. Steland and R. von Sachs, Asymptotics for high-dimensional covariance matrices and quadratic forms with applications to the trace functional and shrinkage, Stochastic Process. Appl., 128(8): 2816–2855, 2018.10.1016/j.spa.2017.10.007
  66. [66] L. Tarassenko, A. Nairac, N. Townsend, I. Buxton, and P. Cowley, Novelty detection for the identification of abnormalities, International Journal of Systems Science, 31(11): 1427–1439, 2000.10.1080/00207720050197802
  67. [67] B. Trawiński, M. Smętek, Z. Telec, and T. Lasota, Nonparametric statistical analysis for multiple comparison of machine learning regression algorithms, International Journal of Applied Mathematics and Computer Science, 22(4): 867–881, 2012.10.2478/v10006-012-0064-z
  68. [68] M. Vidyasagar, A theory of learning and generalization, Springer-Verlag, Berlin, 2002.
  69. [69] G. Vinue and I. Epifanio, Robust archetypoids for anomaly detection in big functional data, Advances in Data Analysis and Classification, pages 1–26, 2020.10.1007/s11634-020-00412-9
  70. [70] J. Wang, J. Chiou, and H-G Mueller, Review of Functional Data Analysis, pages 1–41, 2015.10.1146/annurev-statistics-041715-033624
  71. [71] W. Xie, O. Chkrebtii, and S. Kurtek, Visualization and Outlier Detection for Multivariate Elastic Curve Data, IEEE Transactions on Visualization and Computer Graphics, 26(11): 3353–3364, 2020.10.1109/TVCG.2019.2921541758978631180861
  72. [72] Y. Yang and T. Mathew, The simultaneous assessment of normality and homoscedasticity in one-way random effects models, Statistics and Applications (ISSN 2452-7395(online)), 18(2): 97–119, 2020.
  73. [73] M. Yao and H. Wang, One-Class Support Vector Machine for Functional Data Novelty Detection, In 2012 Third Global Congress on Intelligent Systems, pages 172–175. IEEE, 2012.10.1109/GCIS.2012.19
  74. [74] M. Yao and H. Wang, One-class support vector machine for functional data novelty detection, In: Proceedings - 2012 3rd Global Congress on Intelligent Systems, GCIS 2012, number 1, pages 172–175. IEEE, 2012.10.1109/GCIS.2012.19
Language: English
Page range: 195 - 215
Submitted on: Sep 6, 2020
|
Accepted on: Mar 21, 2021
|
Published on: May 29, 2021
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Wojciech Rafajłowicz, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.