Have a personal or library account? Click to login
Bandwidth Selection for Kernel Generalized Regression Neural Networks in Identification of Hammerstein Systems Cover

Bandwidth Selection for Kernel Generalized Regression Neural Networks in Identification of Hammerstein Systems

By: Jiaqing Lv and  Mirosław Pawlak  
Open Access
|May 2021

References

  1. [1] K. Hunt, M. Munih, N. Donaldson, F. Barr, Investigation of the Hammerstein hypothesis in the modeling of electrically stimulated muscle, IEEE Transactions on Biomedical Engineering 45 (1998) 998–1009.10.1109/10.7048689691574
  2. [2] T. Kara, I. Eker, Nonlinear modeling and identification of a DC motor for bidirectional operation with real time experiments, Energy Conversion and Management 45 (2004) 1087–1106.10.1016/j.enconman.2003.08.005
  3. [3] T. Quatieri, D. Reynolds, G. O’Leary, Estimation of handset nonlinearity with application to speaker recognition, IEEE Transactions on Speech and Audio Processing 8 (2000) 567–584.10.1109/89.861376
  4. [4] J. Turunen, J. Tanttu, P. Loula, Hammerstein model for speech coding, EURASIP Journal on Applied Signal Processing (2003) 1238–1249.10.1155/S1110865703307048
  5. [5] E. Capobianco, Hammerstein system representation of financial volatility processes, The European Physical Journal B 27 (2002) 201–211.
  6. [6] W. Greblicki, M. Pawlak, Nonparametric System Identification, Cambridge University Press, 2008.10.1017/CBO9780511536687
  7. [7] L. Ljung, System Identification: Theory for the User, Prentice Hall, New Jersey, 1987.
  8. [8] F. Giri, E. Bai, Block-Oriented Nonlinear System Identification, Springer-Verlag, 2010.10.1007/978-1-84996-513-2
  9. [9] H.-F. Chen, W. Zhao, Recursive Identification and Parameter Estimation, CRC Press, 2014.10.1201/b17078
  10. [10] R. Pintelon, J. Schoukens, System Identification: A Frequency Domain Approach, John Wiley & Sons, 2012.10.1002/9781118287422
  11. [11] S. A. Billings, Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains, John Wiley & Sons, 2013.10.1002/9781118535561
  12. [12] W. Greblicki, M. Pawlak, The weighted nearest neighbor estimate for Hammerstein system identification, IEEE Transactions on Automatic Control 64 (2019) 1550–1565.10.1109/TAC.2018.2866463
  13. [13] W. Greblicki, M. Pawlak, Hammerstein system identification with the nearest neighbor algorithm, IEEE Transactions on Information Theory 63 (2017) 4746–4757.10.1109/TIT.2017.2694013
  14. [14] J. G. Smith, S. Kamat, K. Madhavan, Modeling of ph process using wavenet based Hammerstein model, Journal of Process Control 17 (6) (2007) 551–561.10.1016/j.jprocont.2006.11.001
  15. [15] K. Fruzzetti, A. Palazoğlu, K. McDonald, Nolinear model predictive control using Hammerstein models, Journal of Process Control 7 (1) (1997) 31–41.10.1016/S0959-1524(97)80001-B
  16. [16] L. Jia, X. Li, M.-S. Chiu, Correlation analysis based mimo neuro-fuzzy Hammerstein model with noises, Journal of Process Control 41 (2016) 76–91.10.1016/j.jprocont.2015.11.006
  17. [17] J. Wang, Q. Zhang, Detection of asymmetric control valve stiction from oscillatory data using an extended Hammerstein system identification method, Journal of Process Control 24 (1) (2014) 1–12.10.1016/j.jprocont.2013.10.012
  18. [18] W. Wu, D.-W. Jhao, Control of a direct internal reforming molten carbonate fuel cell system using wavelet network-based Hammerstein models, Journal of Process Control 22 (3) (2012) 653–658.10.1016/j.jprocont.2012.01.011
  19. [19] C. Qi, H.-T. Zhang, H.-X. Li, A multi-channel spatio-temporal Hammerstein modeling approach for nonlinear distributed parameter processes, Journal of Process Control 19 (1) (2009) 85–99.10.1016/j.jprocont.2008.01.006
  20. [20] G. Harnischmacher, W. Marquardt, A multi-variate Hammerstein model for processes with input directionality, Journal of Process Control 17 (2007) 539–550.10.1016/j.jprocont.2006.12.001
  21. [21] M. Pawlak, On the series expansion approach to the identification of Hammerstein systems, IEEE Transactions on Automatic Control 36 (6) (1991) 763–767.10.1109/9.86954
  22. [22] D. Specht, A general regression neural network, IEEE Transactions on Neural Networks 2 (1991) 568–576.10.1109/72.9793418282872
  23. [23] P. Duda, M. Jaworski, L. Rutkowski, Convergent time-varying regression models for data streams: Tracking concept drift by the recursive Parzen-based generalized regression neural networks, International Journal of Neural Systems 28 (2018) 1750048.
  24. [24] J. S. Marron, Automatic smoothing parameter selection: a survey, Empirical Economics 13 (3-4) (1988) 187–208.10.1007/BF01972448
  25. [25] W. Härdle, P. Hall, J. S. Marron, How far are automatically chosen regression smoothing parameters from their optimum?, Journal of the American Statistical Association 83 (401) (1988) 86–95.10.1080/01621459.1988.10478568
  26. [26] J. Rice, Bandwidth choice for nonparametric regression, The Annals of Statistics (1984) 1215–1230.10.1214/aos/1176346788
  27. [27] T. Gasser, A. Kneip, W. Köhler, A flexible and fast method for automatic smoothing, Journal of the American Statistical Association 86 (415) (1991) 643–652.10.1080/01621459.1991.10475090
  28. [28] J. S. Marron, Partitioned cross-validation, Econometric Reviews 6 (2) (1987) 271–283.10.1080/07474938708800136
  29. [29] C.-K. Chu, J. S. Marron, Comparison of two bandwidth selectors with dependent errors, The Annals of Statistics (1991) 1906–1918.10.1214/aos/1176348377
  30. [30] N. Altman, Kernel smoothing of data with correlated errors, Journal of the American Statistical Association 85 (411) (1990) 749–759.10.1080/01621459.1990.10474936
  31. [31] J. Hart, P. Vieu, Data-driven bandwidth choice for density estimation based on dependent data, The Annals of Statistics 18 (2) (1990) 873–890.10.1214/aos/1176347630
  32. [32] K. D. Brabanter, J. D. Brabanter, J. Suykens, Kernel regression in the presence of correlated errors, The Journal of Machine Learning Research 12 (2011) 1955–1976.
  33. [33] Q. Yao, H. Tong, Cross-validatory bandwidth selections for regression estimation based on dependent data, Journal of Statistical Planning and Inference 68 (2) (1998) 387–415.10.1016/S0378-3758(97)00151-1
  34. [34] A. Quintela del Río, Comparison of bandwidth selectors in nonparametric regression under dependence, Computational Statistics & Data Analysis 21 (5) (1996) 563–580.10.1016/0167-9473(95)00028-3
  35. [35] I. Goethals, K. Pelckmans, J. Suykens, B. De Moor, Identification of MIMO Hammerstein models using least squares support vector machines, Automatica 41 (2005) 1263–1272.10.1016/j.automatica.2005.02.002
Language: English
Page range: 181 - 194
Submitted on: Aug 5, 2020
|
Accepted on: Jan 19, 2021
|
Published on: May 29, 2021
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Jiaqing Lv, Mirosław Pawlak, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.