Have a personal or library account? Click to login
An Approach to Generalization of the Intuitionistic Fuzzy Topsis Method in the Framework of Evidence Theory Cover

An Approach to Generalization of the Intuitionistic Fuzzy Topsis Method in the Framework of Evidence Theory

Open Access
|Jan 2021

References

  1. [1] C.L. Hwang, K. Yoon, Multiple Attribute Decision Making Methods and Applications, Springer, Berlin Heidelberg, 1981.10.1007/978-3-642-48318-9
  2. [2] M. Behzadian, S.K. Otaghsara, M. Yazdani, J. Ignatius, A state-of the-art survey of TOPSIS applications, Expert Systems with Applications, 39, 2012, 13051–13069.10.1016/j.eswa.2012.05.056
  3. [3] Y. Çelikbilek, F. Tüysüz, An in-depth review of theory of the TOPSIS method: An experimental analysis, Journal of Management Analytics, 2020, 281–300.10.1080/23270012.2020.1748528
  4. [4] K. Palczewski, W. Sałabun, The fuzzy TOPSIS applications in the last decade, Procedia Computer Science, 159, 2019, 2294–2303.10.1016/j.procs.2019.09.404
  5. [5] M. Anisseh, F. Piri, M.R. Shahraki, F. Agamohamadi, Fuzzy extension of TOPSIS model for group decision making under multiple criteria, Artificial Intelligence Review, 38, 2012, 325–338.10.1007/s10462-011-9258-2
  6. [6] G. Bäyäközkan, G. Çifçi, A combined fuzzy AHP and fuzzy TOPSIS based strategic analysis of electronic service quality in healthcare industry, Expert Systems with Applications, 39, 2012, 2341–2354.10.1016/j.eswa.2011.08.061
  7. [7] G. Bäyäközkan, G. Çifçi, A novel hybrid MCDM approach based on fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS to evaluate green suppliers, Expert Systems with Applications, 39, 2012, 3000–3011.10.1016/j.eswa.2011.08.162
  8. [8] Z.-P. Fan, B. Feng, A multiple attributes decision making method using individual and collaborative attribute data in a fuzzy environment, Information Sciences, 179, 2009, 3603–3618.10.1016/j.ins.2009.06.037
  9. [9] M.N. Mokhtarian, A. Hadi-Vencheh, A new fuzzy TOPSIS method based on left and right scores: An application for determining an industrial zone for dairy products factory, Applied Soft Computing, 12, 2012, 2496–2505.10.1016/j.asoc.2012.03.042
  10. [10] Z. Xu, J. Chen, An interactive method for fuzzy multiple attribute group decision making, Information Sciences, 177, 2007, 248–263.10.1016/j.ins.2006.03.001
  11. [11] Q. Bao, D. Ruan, Y. Shena, E. Hermans, D. Janssens, Improved hierarchical fuzzy TOPSIS for road safety performance evaluation, Knowledge-Based Systems, 32, 2012, 84–90.10.1016/j.knosys.2011.08.014
  12. [12] I. Chamodrakas, D. Martakos, A utility-based fuzzy TOPSIS method for energy efficient network selection in heterogeneous wireless networks, Applied Soft Computing, 12, 2012, 1929–1938.10.1016/j.asoc.2012.04.016
  13. [13] M.F. Chen, G.H. Tzeng, Combining grey relation and TOPSIS concepts for selecting an expatriate host country, Mathematical and Computer Modelling, 40, 2004, 1473–1490.10.1016/j.mcm.2005.01.006
  14. [14] T.C. Chu, Facility location selection using fuzzy TOPSIS under group decisions, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10, 2002, 687–701.10.1142/S0218488502001739
  15. [15] T.C. Chu, Selecting plant location via a fuzzy TOPSIS approach, The International Journal of Advanced Manufacturing Technology, 20, 2002, 859–864.10.1007/s001700200227
  16. [16] T.C. Chu, Y.C. Lin, A fuzzy TOPSIS method for robot selection, The International Journal of Advanced Manufacturing Technology, 21, 2003, 284–290.10.1007/s001700300033
  17. [17] Y. T. Iç, Development of a credit limit allocation model for banks using an integrated Fuzzy TOPSIS and linear programming, Expert Systems with Applications, 39, 2012, 5309–5316.10.1016/j.eswa.2011.11.005
  18. [18] T. Paksoy, N.Y. Pehlivan, C. Kahraman, Organizational strategy development in distribution channel management using fuzzy AHP and hierarchical fuzzy TOPSIS, Expert Systems with Applications, 39, 2012, 2822–2841.10.1016/j.eswa.2011.08.142
  19. [19] S.H. Tsaur, T.Y. Chang, C.H. Yen, The evaluation of airline service quality by fuzzy MCDM, Tourism Management, 23, 2002, 107–115.10.1016/S0261-5177(01)00050-4
  20. [20] B. Vahdani, S.M. Mousavi, R. Tavakkoli-Moghaddam, Group decision making based on novel fuzzy modified TOPSIS method, Applied Mathematical Modelling, 2011, 4257–4269.10.1016/j.apm.2011.02.040
  21. [21] A. Awasthi, S.S. Chauhan, A hybrid approach integrating Affinity Diagram, AHP and fuzzy TOPSIS for sustainable city logistics planning, Applied Mathematical Modelling, 36, 2012, 573–584.10.1016/j.apm.2011.07.033
  22. [22] T.-C. Chu, Y.C. Lin, An interval sense based fuzzy TOPSIS model, Expert Systems with Applications, 36, 2009, 10870–10876.10.1016/j.eswa.2009.01.083
  23. [23] C. Kahraman, G. Büyüközkan, N.Y. Ates¸, A two phase multi-attribute decision-making approach for new product introduction, Information Sciences, 177, 2007, 1567–1582.10.1016/j.ins.2006.09.008
  24. [24] M.-S. Kuo, G.-H. Tzeng, W.-C. Huang, Group decision-making based on concepts of ideal and anti-ideal points in a fuzzy environment, Mathematical and Computer Modelling, 45, 2007, 324–339.10.1016/j.mcm.2006.05.006
  25. [25] S. Rouhani, M. Ghazanfari, M. Jafari, Evaluation model of business intelligence for enterprise systems using fuzzy TOPSIS, Expert Systems with Applications, 39, 2012, 3764–3771.10.1016/j.eswa.2011.09.074
  26. [26] Y.M. Wang, Y. Luo, Z.-S. Hua, A note on group decision-making based on concepts of ideal and anti-ideal points in a fuzzy environment, Mathematical and Computer Modelling, 46, 2007, 1256–1264.10.1016/j.mcm.2007.01.003
  27. [27] A. Zouggari, L. Benyoucef, Simulation based fuzzy TOPSIS approach for group multi-criteria supplier selection problem, Engineering Applications of Artificial Intelligence, 25, 2012, 507–519.10.1016/j.engappai.2011.10.012
  28. [28] L. Dymova, P, Sevastjanov, A. Tikhonenko, An approach to generalization of fuzzy TOPSIS method, Information Sciences, 238, 2013, 149–162.10.1016/j.ins.2013.02.049
  29. [29] K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 1986, 87–96.10.1016/S0165-0114(86)80034-3
  30. [30] D. Dubois, S. Gottwald, P. Hajek, J. Kacprzyk, H. Prade, Terminological difficulties in fuzzy set theory-The case of “Intuitionistic Fuzzy Sets”, Fuzzy Sets and Systems, 156, 2005, 485–491.10.1016/j.fss.2005.06.001
  31. [31] A. Karaşan, C. Kahraman, A novel intuitionistic fuzzy DEMATEL – ANP – TOPSIS integrated methodology for freight village location selection, Journal of Intelligent and Fuzzy Systems, 36(2), 2019, 1335–1352.10.3233/JIFS-17169
  32. [32] F.E. Boran, S.Genç, M.Kurt, D. Akay, A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method, Expert Systems with Applications, 36, 2009, 11363–11368.10.1016/j.eswa.2009.03.039
  33. [33] M. Li, L. Jin, J. Wang, A new MCDM method combining QFD with TOPSIS for knowledge management system selection from the user’s perspective in intuitionistic fuzzy environment, Expert Systems with Applications, 36, 2009, 11363–11368.
  34. [34] R. Lourenzutti, A. Krohling, The Hellinger distance in Multicriteria Decision Making: An illustration to the TOPSIS and TODIM methods, Expert Systems with Applications, 41, 2014, 4414–4421.10.1016/j.eswa.2014.01.015
  35. [35] Z. Xu, X. Zhang, Hesitant fuzzy multi-attribute decision making based on TOPSIS with incomplete weight information, Knowledge-Based Systems, 52, 2013, 53–64.10.1016/j.knosys.2013.05.011
  36. [36] F. Ye, An extended TOPSIS method with interval-valued intuitionistic fuzzy numbers for virtual enterprise partner selection, Expert Systems with Applications, 37, 2010, 7050–7055.10.1016/j.eswa.2010.03.013
  37. [37] H. Zhang, L.Yu, MADM method based on cross-entropy and extended TOPSIS with interval-valued intuitionistic fuzzy sets, Knowledge-Based Systems, 30, 2012, 115–120.10.1016/j.knosys.2012.01.003
  38. [38] H.-C. Liu, J.-X. You, M.-M. Shan, L.-N. Shao, Failure mode and effects analysis using intuitionistic fuzzy hybrid TOPSIS approach, Soft Computing, 19(4), 2015, 1085–1098.10.1007/s00500-014-1321-x
  39. [39] S.-M. Chen, S.-H. Cheng, T.-C. Lan, Multicriteria decision making based on the TOPSIS method and similarity measures between intuitionistic fuzzy values, Information Sciences, 367–368, 2016, 279–295.10.1016/j.ins.2016.05.044
  40. [40] A. R. Mishra, P. Rani, D. Jain, Information measures based TOPSIS method for multicriteria decision making problem in intuitionistic fuzzy environment, Iranian Journal of Fuzzy Systems, 14, 2017, 41–63.
  41. [41] G. Dwivedi, R.K. Srivastava, S.K. Srivastava, A generalised fuzzy TOPSIS with improved closeness coefficient, Expert Systems with Applications, 96, 2018, 185–195.10.1016/j.eswa.2017.11.051
  42. [42] S. Xian, Z. Yang, H. Guo, Double parameters TOPSIS for multi-attribute linguistic group decision making based on the intuitionistic Z-linguistic variables, Applied Soft Computing, 85, 2019, 105835.10.1016/j.asoc.2019.105835
  43. [43] L. Zhang, J. Zhan, Y. Yao, Intuitionistic fuzzy TOPSIS method based on CVPIFRS models: An application to biomedical problem, Information Sciences, 517, 2020, 315–339.10.1016/j.ins.2020.01.003
  44. [44] X. Zhang, Z. Xu, Soft computing based on maximizing consensus and fuzzy TOPSIS approach to interval-valued intuitionistic fuzzy group decision making, Applied Soft Computing, 26, 2015, 42–56.10.1016/j.asoc.2014.08.073
  45. [45] D. Joshi, S. Kumar, Interval-valued intuitionistic hesitant fuzzy Choquet integral based TOPSIS method for multi-criteria group decision making, European Journal of Operational Research, 248, 2016, 183–191.10.1016/j.ejor.2015.06.047
  46. [46] C.-Y. Wang, S.-M. Chen, Multiple attribute decision making based on interval-valued intuitionistic fuzzy sets, linear programming methodology, and the extended TOPSIS method, Information Sciences, 397–398, 2017, 155–167.10.1016/j.ins.2017.02.045
  47. [47] P. Gupta, M. K. Mehlawat, N. Grover, W. Pedrycz, Multi-attribute group decision making based on extended TOPSIS method under interval-valued intuitionistic fuzzy environment, Applied Soft Computing, 69, 2018, 554–567.10.1016/j.asoc.2018.04.032
  48. [48] P. Gupta, M. K. Mehlawat, N. Grover, A Generalized TOPSIS Method for Intuitionistic Fuzzy Multiple Attribute Group Decision Making Considering Different Scenarios of Attributes Weight Information, International Journal of Fuzzy Systems, 21, 2019, 369–387.10.1007/s40815-018-0563-7
  49. [49] P. Hajeka, W. Froelich, Integrating TOPSIS with interval-valued intuitionistic fuzzy cognitive maps for effective group decision making, Information Sciences, 485, 2019, 394–412.10.1016/j.ins.2019.02.035
  50. [50] S. Zeng, S.-M. Chen, K.-Y. Fan, Interval-valued intuitionistic fuzzy multiple attribute decision making based on nonlinear programming methodology and TOPSIS method, Information Sciences, 506, 2020, 424–442.10.1016/j.ins.2019.08.027
  51. [51] F. Dammaka, L. Baccour, A.M. Alimia, A new ranking method for TOPSIS and VIKOR under interval valued intuitionistic fuzzy sets and possibility measures, Journal of Intelligent and Fuzzy Systems, 38, 2020, 4459–4469.10.3233/JIFS-191223
  52. [52] Z. Xu, Intuitionistic fuzzy aggregation operators, IEEE Transactions on Fuzzy Systems, 15, 2007, 1179–1183.10.1109/TFUZZ.2006.890678
  53. [53] Z. Xu, R. Yager, Some geometric aggregation operators based on intuitionistic fuzzy sets, International Journal of General Systems, 35(4), 2006, 417–433.10.1080/03081070600574353
  54. [54] Z. Xu, Intuitionistic preference relations and their application in group decision making, Information Sciences, 177, 2007, 2363–2379.10.1016/j.ins.2006.12.019
  55. [55] J.H. Park, I.Y. Park, Y.C. Kwun, X. Tan, Extension of the TOPSIS method for decision making problems under interval-valued intuitionistic fuzzy environment, Applied Mathematical Modelling, 35(5), 2011, 2544–2556.10.1016/j.apm.2010.11.025
  56. [56] C. Tan, A multi-criteria interval-valued intuitionistic fuzzy group decision making with Choquet integral-based TOPSIS, Expert Systems with Applications, 38, 2011, 3023–3033.10.1016/j.eswa.2010.08.092
  57. [57] L. Dymova, P. Sevastjanov, The operations on intuitionistic fuzzy values in the framework of Dempster-Shafer theory, Knowledge-Based Systems, 35, 2012, 132–143.10.1016/j.knosys.2012.04.026
  58. [58] L. Dymova, P. Sevastjanov, An interpretation of intuitionistic fuzzy sets in terms of evidence theory. Decision making aspect, Knowledge-Based Systems, 23, 2010, 772–782.10.1016/j.knosys.2010.04.014
  59. [59] L. Dymova, P. Sevastjanov, The operations on interval-valued intuitionistic fuzzy values in the framework of Dempster-Shafer theory, Information Sciences, 360, 2016, 256–272.10.1016/j.ins.2016.04.038
  60. [60] K. Atanassov, Review and new results on intuitionistic fuzzy sets, Preprint IM-MFAIS-1-88, Sofia, 1988.10.1016/0165-0114(89)90215-7
  61. [61] K.T. Atanassov, G. Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Sets and Systems, 31, 1989, 343–349.10.1016/0165-0114(89)90205-4
  62. [62] M.S. Yang, Z. Hussain, M. Ali, Belief and plausibility measures on intuitionistic fuzzy sets with construction of belief-plausibility TOPSIS, Complexity, 2020, 7849686.10.1155/2020/7849686
  63. [63] W. Silvert, Ecological impact classification with fuzzy sets, Ecological Modelling, 96, 1997, 1–10.10.1016/S0304-3800(96)00051-8
  64. [64] P. Sevastjanov, P. Figat, Aggregation of aggregating modes in MCDM. Synthesis of Type 2 and Level 2 fuzzy sets, Omega, 35, 2007, 505–523.10.1016/j.omega.2005.09.005
  65. [65] K. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems, 61, 1994, 137–142.10.1016/0165-0114(94)90229-1
  66. [66] S.K. Dey, R. Biswas, A.R. Roy, Some operations on intuitionistic fuzzy sets, Fuzzy Sets and Systems, 114, 2000, 477–484.10.1016/S0165-0114(98)00191-2
  67. [67] S.M. Chen, J.M. Tan, Handling multicriteria fuzzy decision-making problems based on vague set theory, Fuzzy Sets and Systems, 67, 1994, 163–172.10.1016/0165-0114(94)90084-1
  68. [68] D.H. Hong, C.-H. Choi, Multicriteria fuzzy decision-making problems based on vague set theory, Fuzzy Sets and Systems, 114, 2000, 103–113.10.1016/S0165-0114(98)00271-1
  69. [69] A.P. Dempster, Upper and lower probabilities induced by a muilti-valued mapping, Ann. Math. Stat. 38, 1967, 325–339.10.1214/aoms/1177698950
  70. [70] A.P. Dempster, A generalization of Bayesian inference (with discussion), J. Roy. Stat. Soc., Series B., 30(2), 1968, 208–247.10.1111/j.2517-6161.1968.tb00722.x
  71. [71] G. Shafer, A mathematical theory of evidence, Princeton, Princeton University Press, 1976.
  72. [72] P. Vasseur, C. Pegard, E. Mouad, L. Delahoche, Perceptual organization approach based on Dempster-Shafer theory, Pattern Recognition, 32, 1999, 1449–1462.10.1016/S0031-3203(98)00172-1
  73. [73] Y.M. Wang, J.B. Yang, D.L. Xu, A preference aggregation method through the estimation of utility intervals, Computers and Operations Research, 32, 2005, 2027–2049.10.1016/j.cor.2004.01.005
  74. [74] P. Sevastjanov, Numerical methods for interval and fuzzy number comparison based on the probabilistic approach and Dempster-Shafer theory, Information Sciences, 177, 2007, 4645–4661.10.1016/j.ins.2007.05.001
  75. [75] X. Wang, E.E. Kerre, Reasonable properties for the ordering of fuzzy quantities (I) (II), Fuzzy Sets and Systems, 112, 2001, 387–405.10.1016/S0165-0114(99)00063-9
  76. [76] G. Facchinetti, R.G. Ricci, S. Muzzioli, Note on ranking fuzzy triangular numbers, International Journal of Intelligent Systems, 13, 1998, 613–622.10.1002/(SICI)1098-111X(199807)13:7<613::AID-INT2>3.0.CO;2-N
  77. [77] Y.M. Wang, J.B. Yang, D.L. Xu, A preference aggregation method through the estimation of utility intervals, Computers and Operations Research, 32, 2005, 2027–2049.10.1016/j.cor.2004.01.005
  78. [78] Y.M. Wang, J.B. Yang, D.L. Xu, A two-stage logarithmic goal programming method for generating weights from interval comparison matrices, Fuzzy Sets and Systems, 152, 2005, 475–498.10.1016/j.fss.2004.10.020
  79. [79] Z. Xu, Q. Da, The uncertain OWA operator, International Journal of Intelligent Systems, 17, 2002, 569–575.10.1002/int.10038
  80. [80] Z. Xu, J. Chen, Some models for deriving the priority weights from interval fuzzy preference relations, European Journal of Operational Research, 184, 2008, 266–280.10.1016/j.ejor.2006.11.011
  81. [81] P. Sevastjanov, P. Rog, Two-objective method for crisp and fuzzy interval comparison in optimization, Computers and Operations Research, 33, 2006, 115–131.10.1016/j.cor.2004.07.002
  82. [82] R. Yager, Multiple objective decision-making using fuzzy sets, International Journal of Man-Machine Studies, 9, 1979, 375–382.10.1016/S0020-7373(77)80008-4
  83. [83] H.J. Zimmermann, P. Zysno, Latest connectives in human decision making, Fuzzy Sets and Systems, 4, 1980, 37–51.10.1016/0165-0114(80)90062-7
  84. [84] L. Dymova, P, Sevastjanov, A. Tikhonenko, A direct interval extension of TOPSIS method, Expert Systems with Applications, 40, 2013, 4841–4847.10.1016/j.eswa.2013.02.022
  85. [85] R.E. Moore, Interval analysis, Englewood Cliffs., N.J., Prentice-Hall, 1966.
  86. [86] L. Dimova, P. Sevastjanov, D. Sevastjanov, MCDM in a Fuzzy Setting: Investment Projects Assessment Application, Int. Journal of Production Economy, 100, 2006, 10–29.10.1016/j.ijpe.2004.09.014
  87. [87] L. Dymowa, Soft Computing in Economics and Finance, Springer, 2011.10.1007/978-3-642-17719-4
  88. [88] L. Dymova, P. Sevastjanov, Fuzzy Multiobjective Evaluation of Investments with Applications, in Fuzzy Engineering Economics with Applications. Cengiz Kahraman (Ed.), Springer-Verlag Berlin Heidelberg, 2008, 243–287.10.1007/978-3-540-70810-0_15
  89. [89] P. Sevastjanov, L. Dymova, Stock screening with use of multiple criteria decision making and optimization, Omega, 37, 2009, 659–671.10.1016/j.omega.2008.04.002
  90. [90] L.A. Zadeh, Quantitative fuzzy semantics, Information Sciences, 3, 1971, 177–200.10.1016/S0020-0255(71)80005-1
Language: English
Page range: 157 - 175
Submitted on: Apr 4, 2020
Accepted on: Dec 22, 2020
Published on: Jan 29, 2021
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Ludmila Dymova, Krzysztof Kaczmarek, Pavel Sevastjanov, Łukasz Sułkowski, Krzysztof Przybyszewski, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.