Have a personal or library account? Click to login
Monitoring Regenerative Heat Exchanger in Steam Power Plant by Making Use of the Recurrent Neural Network Cover

Monitoring Regenerative Heat Exchanger in Steam Power Plant by Making Use of the Recurrent Neural Network

Open Access
|Jan 2021

References

  1. [1] L. B. Almeida, Backpropagation in non-feedforward networks, Proc. of the NATO ARW on Neural Computers, Springer Verlag, Heidelberg, 74–91, 1993.
  2. [2] J. Bilski, B. Kowalczyk, A. Marchlewska, J.M. Zurada, Local Levenberg-Marquardt Algorithm for Learning Feedforwad Neural Networks, Journal of Artificial Intelligence and Soft Computing Research, 10(4), 2020.10.2478/jaiscr-2020-0020
  3. [3] T. Chmielniak, P. Krzys´lak, Comparative analysis of energy potential of three ways of configuration of a condenser power plant thermal cycle, Polish Marit. Res., 15, 30–36, 2008.10.2478/v10012-007-0094-x
  4. [4] T. Chmielniak, H. Łukowicz, Condensing power plant cycle-Assessing possibilities of improving its efficiency, Arch. Thermodyn., 31, 105–113, 2010.10.2478/v10173-010-0017-6
  5. [5] K. Cpałka, Design of interpretable fuzzy systems, Springer, 2017.10.1007/978-3-319-52881-6
  6. [6] P. Deshpande, N. Warke, P. Khandare, V. Deshpande, Thermal power plant analysis using artificial neural network, Proc. of the 3rd Nirma Univ. Int. Conf. Eng. NUiCONE 2012, 1–6, 2012.10.1109/NUICONE.2012.6493290
  7. [7] R. Dixit, J. Kumar, T. Soota, Modeling of a Thermal Power Plant using Neural Network and Regression Modeling of a Thermal Power Plant using Neural Network and Regression Technique, 2018.
  8. [8] P. Duda, M. Jaworski, A. Cader, L. Wang, On Training Deep Neural Networks Using a Streaming Approach Journal of Artificial Intelligence and Soft Computing Research, 10(1), pp. 15–26, 2020.10.2478/jaiscr-2020-0002
  9. [9] A. Gardzilewicz, J. Głuch, M. Bogulicz, R. Walkowiak, M. Najwer, J. Kiebdoj, Experience in Application of Thermal Diagnostics in the Turow Power Station, Proc. of the Int. Joint Power Generation Conference collocated with TurboExpo 2003 (2003 Int. Joint Power Generation Conference, Atlanta, Georgia, USA), 371–378, 2003.10.1115/IJPGC2003-40017
  10. [10] J. C. Gallagher, S. K. Boddhu, S. Vigraham, A reconfigurable continuous time recurrent neural network for evolvable hardware applications, In Proc. of the 2005 IEEE Congress on Evolutionary Computation, Piscataway, NJ: IEEE, 2005.
  11. [11] J. Głuch, Fault detection in measuring systems of power plants, Polish Marit. Res., 15, 45–51, 2008.10.2478/v10012-007-0096-8
  12. [12] Y. Guo, Y. Liu, T. Georgiou, M. S. Lew, A review of semantic segmentation using deep neural networks, Int. Journal of Multimedia Information Retrieval, 2, 1–7, 2017.10.1007/s13735-017-0141-z
  13. [13] R. Isermann, Supervision FDD Methods-An Introduction, Control Eng. Pract., 5, 639–652, 1997.10.1016/S0967-0661(97)00046-4
  14. [14] F. B. Ismail Alnaimi, H. H. Al-Kayiem, Artificial intelligent system for steam boiler diagnosis based on superheater monitoring, J. Appl. Sci., 11, 2011.10.3923/jas.2011.1566.1572
  15. [15] A. M. Kler, P. V. Zharkov, N. O. Epishkin, Parametric optimization of supercritical power plants using gradient methods, Energy, 189, 2019.10.1016/j.energy.2019.116230
  16. [16] K. Kosowski, Introduction to the Theory of Marine Turbines, Foundation for the Promotion of Maritime Industry, Gdańsk, 2005.
  17. [17] K. Kosowski, Ship Turbine Power Plants, Fundamentals of Thermodynamical Cycles, Foundation for the Promotion of Maritime Industry, Gdańsk, 2005.
  18. [18] Ł. Kowalczyk, W. Elsner, P. Niegodajew, M. Marek, Gradient-free methods applied to optimisation of advanced ultra-supercritical power plant, Appl. Therm. Eng., 96, 200–208, 2016.10.1016/j.applthermaleng.2015.11.091
  19. [19] J. K Mohanty., A. Adarsh, P. R. Dash, K. Parida, P. K. Pradhan, Integrated Condition Monitoring of Large Captive Power Plants and Aluminum Smelters, Sound&Vibration., 53, 223–235, 2019.10.32604/sv.2019.07737
  20. [20] T. Niksa-Rynkiewicz, A. Witkowska, Analisis of impact of ship model parameters on changes of control quality index in ship dynamic positioning system, Polish Maritime Research, 2019.10.2478/pomr-2019-0001
  21. [21] S. Osowski, Signal flow graphs and neural networks. Biological Cybernetics, 70, 387–395, 1994.10.1007/BF00200336
  22. [22] F. J. Pineda, Generalization of Back-Propagation to Recurrent Neural Network, The American Physical Society, 59(19), 1988.10.1103/PhysRevLett.59.222910035458
  23. [23] F. J. Pineda, Recurrent Back-Propagation and the Dynamical Approach to Adaptive Neural Computation, Neural Computation, 1(2), 161–172, 1989.10.1162/neco.1989.1.2.161
  24. [24] M. A. Ranzato, A. Szlam, J. Bruna, M. Mathieu, R. Collobert, S. Chopra, Video (language) modeling: A baseline for generative models of natural videos. arXiv:1412.6604, 2014.
  25. [25] W. Rawat, Z. Wang, Deep convolutional neural Networks for image classification: A comprehensive review, Neural Computation, 29(9), 1–10, 2017.10.1162/neco_a_00990
  26. [26] A. J. Robinson, F. Fallside, The utility driven dynamic error propagation network. Cambridge: University of Cambridge Department of Engineering, 1987.
  27. [27] L. Rutkowski, Computational intelligence: methods and techniques, Springer Science & Business Media, 2008.
  28. [28] A. Saeed A. Rashid, Development of Core Monitoring System for a Nuclear Power Plant using Artificial Neural Network Technique, Annals of Nuclear Energy, 144(1), 2020.10.1016/j.anucene.2020.107513
  29. [29] M. Saghafia, M. B. Ghofranib, Real-time estimation of break sizes during LOCA in nuclear power plants using NARX neural network, Nuclear Engineering and Technology 51(3), 702–708, 2019.10.1016/j.net.2018.11.017
  30. [30] T. K. Sai, K. A. Reddy, Neural Network Applications in a Power Station, Int. J. Soft Comput., 6, 01–16, 2015.10.5121/ijsc.2015.6201
  31. [31] P. Sharma, A. Singh, Era of deep neural networks: A review, In Proc. of the 8th Int. Conf. on Computing, Communication and Networking Technologies, Piscataway, NJ: IEEE, 1–5, 2017.
  32. [32] J. Smrekar, D. Pandit, M. Fast, M. Assadi, D. Sudipta, Prediction of power output of a coal-fired power plant by artificial neural network, Neural Comput. Appl., 19, 725–740, 2010.10.1007/s00521-009-0331-6
  33. [33] A. Witkowska., T. Niksa-Rynkiewicz, Dynamically positioned ship steering making use of backstepping method and artificial neural networks, Polish Maritime Research, 2018.10.2478/pomr-2018-0126
  34. [34] P. J. Werbos, Generalization of backpropagation with application to a recurrent gas market model. Neural Networks, 1(4), 339–356, 1988.10.1016/0893-6080(88)90007-X
  35. [35] G. Yang Y. Wang, X. Li, Prediction of the NOx emissions from thermal power plant using long-short term memory neural network, Energy, 192(1), 2020.10.1016/j.energy.2019.116597
  36. [36] Y. Yu, X. Si, C. Hu, J. Zhang, A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures, Neural Computation, 31(7), 1235–1270, 2019.10.1162/neco_a_0119931113301
Language: English
Page range: 143 - 155
Submitted on: Jul 7, 2020
Accepted on: Dec 22, 2020
Published on: Jan 29, 2021
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Tacjana Niksa-Rynkiewicz, Natalia Szewczuk-Krypa, Anna Witkowska, Krzysztof Cpałka, Marcin Zalasiński, Andrzej Cader, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.