Have a personal or library account? Click to login
Impact of Learners’ Quality and Diversity in Collaborative Clustering Cover

Impact of Learners’ Quality and Diversity in Collaborative Clustering

Open Access
|Dec 2018

References

  1. [1] R. E. Schapire, The strength of weak learn-ability, Mach. Learn., vol. 5, no. 2, pp. 197–227, Jul. 1990. [Online]. Available: http://dx.doi.org/10.1023/A:102264880076010.1023/A:1022648800760
  2. [2] D. H. Wolpert, Stacked generalization, Neural Networks, vol. 5, pp. 241–259, 199210.1016/S0893-6080(05)80023-1
  3. [3] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas, On combining classifiers, IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 3, pp. 226–239, Mar. 1998. [Online]. Available: http://dx.doi.org/10.1109/34.66788110.1109/34.667881
  4. [4] P. Bachman, O. Alsharif, and D. Precup, Learning with pseudo-ensembles, in Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, Eds. Curran Associates, Inc., 2014, pp. 3365–3373
  5. [5] A. Strehl and J. Ghosh, Cluster Ensembles – A Knowledge Reuse Framework for Combining Multiple Partitions, Journal on Machine Learning Research (JMLR), vol. 3, pp. 583–617, Dec. 2002
  6. [6] J. da Silva and M. Klusch, Inference on distributed data clustering, in Machine Learning and Data Mining in Pattern Recognition, ser. Lecture Notes in Computer Science, P. Perner and A. Imiya, Eds. Springer Berlin Heidelberg, 2005, vol. 3587, pp. 610–619. [Online]. Available: http://dx.doi.org/10.1007/11510888_6010.1007/11510888_60
  7. [7] W. Pedrycz, Collaborative fuzzy clustering, Pattern Recognition Letters, vol. 23, no. 14, pp. 1675–1686, 200210.1016/S0167-8655(02)00130-7
  8. [8] N. Grozavu, M. Ghassany, and Y. Bennani, Learning confidence exchange in collaborative clustering, in IJCNN, 2011, pp. 872–87910.1109/IJCNN.2011.6033313
  9. [9] W. Pedrycz and K. Hirota, A consensus-driven fuzzy clustering, Pattern Recogn. Lett., vol. 29, no. 9, pp. 1333–1343, 200810.1016/j.patrec.2008.02.015
  10. [10] N. Grozavu, G. Cabanes, and Y. Bennani, Diversity analysis in collaborative clustering, in IEEE World Congress on Computational Intelligence, 201410.1109/IJCNN.2014.6889528
  11. [11] B. Depaire, R. Falcón, K. Vanhoof, and G. Wets, Pso driven collaborative clustering: A clustering algorithm for ubiquitous environments, Intell. Data Anal., vol. 15, no. 1, pp. 49–68, Jan. 2011. [Online]. Available: http://dl.acm.org/citation.cfm?id=1937721.193772510.3233/IDA-2010-0455
  12. [12] M. Ghassany, N. Grozavu, and Y. Bennani, Collaborative clustering using prototype-based techniques, International Journal of Computational Intelligence and Applications, vol. 11, no. 03, p. 1250017, 201210.1142/S1469026812500174
  13. [13] S. Zhang, C. Zhang, and X. Wu, Knowledge Discovery in Multiple Databases, ser. Advanced Information and Knowledge Processing. Springer, 2004. [Online]. Available: http://dx.doi.org/10.1007/978-0-85729-388-610.1007/978-0-85729-388-6
  14. [14] W. Pedrycz, Interpretation of clusters in the framework of shadowed sets, Pattern Recogn. Lett., vol. 26, no. 15, pp. 2439–2449, 200510.1016/j.patrec.2005.05.001
  15. [15] N. Grozavu and Y. Bennani, Topological collaborative clustering, Australian Journal of Intelligent Information Processing Systems, vol. 12, no. 3, 2010
  16. [16] M. Ghassany, N. Grozavu, and Y. Bennani, Collaborative clustering using prototype-based techniques, International Journal of Computational Intelligence and Applications, vol. 11, no. 3, 201210.1142/S1469026812500174
  17. [17] N. Grozavu and Y. Bennani, Topological Collaborative Clustering, in LNCS Springer of ICONIP’10 : 17th International Conference on Neural Information Processing, 2010
  18. [18] T. Kohonen, Self-organized formation of topologically correct feature maps, Biol. Cyb., vol. 43, pp. 59–69, 198210.1007/BF00337288
  19. [19] Analysis of a simple self-organizing process, Biol. Cyb., vol. 44, pp. 135–140, 198210.1007/BF00317973
  20. [20] C. M. Bishop and C. K. I. Williams, GTM: The generative topographic mapping, Neural Computation, vol. 10, pp. 215–234, 199810.1162/089976698300017953
  21. [21] N. Grozavu, Y. Bennani, and M. Lebbah, From variable weighting to cluster characterization in topographic unsupervised learning, in Proc. of IJCNN09, International Joint Conference on Neural Network, 200910.1109/IJCNN.2009.5178666
  22. [22] N. Grozavu and Y. Bennani, Topological collaborative clustering, Australian Journal of Intelligent Information Processing Systems, vol. 12, no. 2, 2010
  23. [23] J. Sublime, N. Grozavu, G. Cabanes, Y. Bennani, and A. Cornuéjols, From horizontal to vertical collaborative clustering using generative topographic maps, International Journal of Hybrid Intelligent Systems, vol. 12, no. 4, 201610.3233/HIS-160219
  24. [24] L. I. Kuncheva and C. J. Whitaker, Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy, Mach. Learn., vol. 51, no. 2, pp. 181–207, May 200310.1023/A:1022859003006
  25. [25] F. Gullo, A. Tagarelli, and S. Greco, Diversity-Based Weighting Schemes for Clustering Ensembles, in SDM, 2009, pp. 437–44810.1137/1.9781611972795.38
  26. [26] N. Grozavu, M. Ghassany, and Y. Bennani, Learning confidence exchange in collaborative clustering, in Neural Networks (IJCNN), The 2011 International Joint Conference on IEEE, 2011, pp. 872–87910.1109/IJCNN.2011.6033313
  27. [27] A. K. Jain and R. C. Dubes, Algorithms for clustering data. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1988
  28. [28] W. M. Rand, Objective criteria for the evaluation of clustering methods, Journal of the American Statistical Association, vol. 66, no. 336, pp. 846–850, Dec. 197110.1080/01621459.1971.10482356
  29. [29] L. Hubert and P. Arabie, Comparing Partitions, Journal of the Classification, vol. 2, pp. 193–218, 198510.1007/BF01908075
  30. [30] P. Jaccard, The distribution of the flora in the alpine zone, New Phytologist, vol. 11, no. 2, pp. 37–50, 191210.1111/j.1469-8137.1912.tb05611.x
  31. [31] D. L. Wallace, A Method for Comparing Two Hierarchical Clusterings: Comment, Journal of the American Statistical Association, vol. 78, no. 383, pp. pp. 569–576, 1983. [Online]. Available: http://www.jstor.org/stable/228811810.2307/2288118
  32. [32] F. Pinto, J. Carrico, M. Ramirez, and J. Almeida, Ranked Adjusted Rand: integrating distance and partition information in a measure of clustering agreement, BMC Bioinformatics, vol. 8, no. 1, p. 44, 2007. [Online]. Available: http://www.biomedcentral.com/1471-2105/8/4410.1186/1471-2105-8-44180209317286861
  33. [33] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, Second Edition (Morgan Kaufmann Series in Data Management Systems). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2005
  34. [34] M. Meila, Comparing clusterings - an information based distance, Journal of Multivariate Analysis, vol. 98, pp. 873–895, 200710.1016/j.jmva.2006.11.013
  35. [35] A. Frank and A. Asuncion, UCI machine learning repository, 2010. [Online]. Available: http://archive.ics.uci.edu/ml
  36. [36] T. Calinski and J. Harabasz, Dendrite method for cluster analysis, Communications in Statistics, vol. 3, no. 1, pp. 1–27, 197410.1080/03610917408548446
  37. [37] D. L. Davies and D. W. Bouldin, A cluster separation measure, IEEE Trans. Pattern Anal. Mach. Intell., vol. 1, no. 2, pp. 224–227, Feb. 197910.1109/TPAMI.1979.4766909
  38. [38] W. J. Krzanowski and Y. T. Lai, A criterion for determining the number of groups in a data set using sum-of-squares clustering, Biometrics, vol. 44, no. 1, pp. pp. 23–34, 1988. [Online]. Available: http://www.jstor.org/stable/253189310.2307/2531893
  39. [39] P. J. Rousseeuw, Silhouettes: A graphical aid to the interpretation and validation of cluster analysis, Journal of Computational and Applied Mathematics, vol. 20, no. 0, pp. 53 – 65, 1987. [Online]. Available: http://www.sciencedirect.com/science/article/pii/037704278790125710.1016/0377-0427(87)90125-7
  40. [40] K. Kiviluoto, Topology Preservation in Self-Organizing Maps, International Conference on Neural Networks, pp. 294–299, 199610.1109/ICNN.1996.548907
  41. [41] T. Kohonen, Self-Organizing Maps. Berlin: Springer-Verlag, 200110.1007/978-3-642-56927-2
Language: English
Page range: 149 - 165
Submitted on: Jan 28, 2018
|
Accepted on: Jul 3, 2018
|
Published on: Dec 31, 2018
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Parisa Rastin, Basarab Matei, Guénaël Cabanes, Nistor Grozavu, Younès Bennani, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.