Have a personal or library account? Click to login

Development of C-Means Clustering Based Adaptive Fuzzy Controller for a Flapping Wing Micro Air Vehicle

Open Access
|Dec 2018

References

  1. [1] C. P. Ellington, The novel aerodynamics of insect flight: applications to micro-air vehicles, Journal of Experimental Biology, vol. 202, no. 23, pp. 3439–3448, 1999.10.1242/jeb.202.23.3439
  2. [2] W. Shyy, Y. Lian, J. Tang, D. Viieru, and H. Liu, Aerodynamics of low Reynolds number flyers. Cambridge University Press, 2007, vol. 22.10.1017/CBO9780511551154
  3. [3] W. Shyy, H. Aono, S. K. Chimakurthi, P. Trizila, C.-K. Kang, C. E. Cesnik, and H. Liu, Recent progress in flapping wing aerodynamics and aeroelasticity,” Progress in Aerospace Sciences, vol. 46, no. 7, pp. 284–327, 2010.10.1016/j.paerosci.2010.01.001
  4. [4] H. Tennekes, The simple science of flight: from insects to jumbo jets. MIT press, 2009.
  5. [5] A. P. Willmott and C. P. Ellington, The mechanics of flight in the hawkmoth manduca sexta. i. kinematics of hovering and forward flight. Journal of Experimental Biology, vol. 200, no. 21, pp. 2705–2722, 1997.10.1242/jeb.200.21.2705
  6. [6] S. P. Sane, The aerodynamics of insect flight, Journal of experimental biology, vol. 206, no. 23, pp. 4191–4208, 2003.10.1242/jeb.00663
  7. [7] Y. Lin, Y. Xu, H. Chen, M. J. Bender, A. L. Abbott, and R. Müller, Optimal Threshold and LoG Based Feature Identification and Tracking of Bat Flapping Flight, in Applications of Computer Vision (WACV), 2017 IEEE Winter Conference on. IEEE, 2017, pp. 418–426.10.1109/WACV.2017.53
  8. [8] S. M. Nogar, A. Gogulapati, J. J. McNamara, A. Serrani, M. W. Oppenheimer, and D. B. Doman, Control-Oriented Modeling of Coupled Electromechanical-Aeroelastic Dynamics for Flapping-Wing Vehicles,” Journal of Guidance, Control, and Dynamics, 2017.10.2514/1.G002503
  9. [9] J. Zhang and X. Deng, Resonance principle for the design of flapping wing micro air vehicles, IEEE Transactions on Robotics, vol. 33, no. 1, pp. 183–197, 2017.10.1109/TRO.2016.2626457
  10. [10] C. Zhang and C. Rossi, A review of compliant transmission mechanisms for bio-inspired flapping-wing micro air vehicles, Bioinspiration & biomimetics, vol. 12, no. 2, p. 025005, 2017.10.1088/1748-3190/aa58d3
  11. [11] M. W. Oppenheimer, D. O. Sigthorsson, I. E. Weintraub, and D. B. Doman, Wing Design and Testing for a Tailless Flapping Wing Micro Air Vehicle, in AIAA Guidance, Navigation, and Control Conference, 2017, p. 1271.10.2514/6.2017-1271
  12. [12] M. S. Couceiro, N. Ferreira, and J. Machado, Modeling and control of a dragonfly-like robot, Journal of Control Science and Engineering, vol. 2010, p. 5, 2010.10.1155/2010/643045
  13. [13] J. Sun, C. Pan, J. Tong, and J. Zhang, Coupled model analysis of the structure and nano-mechanical properties of dragonfly wings, IET nanobiotechnology, vol. 4, no. 1, pp. 10–18, 2010.10.1049/iet-nbt.2009.000920170254
  14. [14] M. Okamoto, K. Yasuda, and A. Azuma, Aerodynamic characteristics of the wings and body of a dragonfly, Journal of Experimental Biology, vol. 199, no. 2, pp. 281–294, 1996.10.1242/jeb.199.2.2819317808
  15. [15] S. Sudo, K. Tsuyuki, T. Ikohagi, F. Ohta, S. Shida, and J. Tani, A study on the wing structure and flapping behavior of a dragonfly, JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, vol. 42, no. 3, pp. 721–729, 1999.10.1299/jsmec.42.721
  16. [16] J. S. Jang and C. Tomlin, Longitudinal stability augmentation system design for the DragonFly UAV using a single GPS receiver, in AIAA Guidance, Navigation, and Control Conference, AIAA, vol. 5592, 2003.10.2514/6.2003-5592
  17. [17] J. M. Kok and J. Chahl, Design and manufacture of a self-learning flapping wing-actuation system for a dragonfly-inspired MAV, in 54th AIAA Aerospace Sciences Meeting, 2016, p. 1744.10.2514/6.2016-1744
  18. [18] Q.-V. Nguyen, W. L. Chan, and M. Debiasi, Design, fabrication, and performance test of a hovering-based flapping-wing micro air vehicle capable of sustained and controlled flight, 2014.
  19. [19] C.-p. Du, J.-x. Xu, and Y. Zheng, Application of iterative learning tuning to a dragonfly-like flapping wing micro aerial vehicle, in Control and Decision Conference (CCDC), 2016 Chinese. IEEE, 2016, pp. 4215–4220.
  20. [20] M. M. Ferdaus, S. G. Anavatti, M. Pratama, and M. A. Garratt, Online Identification of a Rotary Wing Unmanned Aerial Vehicle from Data Streams,” 2017.
  21. [21] S. B. Hu, W. H. Lu, Z. Y. Chen, L. Lei, and Y. X. Zhang, Attitude control of flapping wing micro aerial vehicle based on double fuzzy sliding mode control, in Advanced Materials Research, vol. 468. Trans Tech Publ, 2012, pp. 704–707.10.4028/www.scientific.net/AMR.468-471.704
  22. [22] A. A. Al-Mahasneh, S. G. Anavatti, and M. Garratt, Nonlinear Multi-Input Multi-Output System Identification using Neuro-Evolutionary Methods for a Quadcopter, IEEE, pp. 217–222, 2017.10.1109/ICACI.2017.7974512
  23. [23] M. M. Ferdaus, S. G. Anavatti, M. A. Garratt, and M. Pratama, Fuzzy Clustering based Nonlinear System Identification and Controller Development of Pixhawk based Quadcopter, in Advanced Computational Intelligence (ICACI), 2017 IEEE International Conference on. IEEE, 2017, pp. 223–230.10.1109/ICACI.2017.7974513
  24. [24] M. M. Ferdaus, S. G. Anavatti, M. A. Garratt, and M. Pratama, Fuzzy Clustering based Modelling and Adaptive Controlling of a Flapping Wing Micro Air Vehicle, in Computational Intelligence (IEEE SSCI), 2017 IEEE Symposium Series on. IEEE, 2017, pp. 1914–1919.10.1109/SSCI.2017.8280969
  25. [25] M. M. Ferdaus, M. Pratama, S. G. Anavatti, and M. A. Garratt, Evolving Neuro-Fuzzy System based Online Identification of a Bio-inspired Flapping Wing Micro Aerial Vehicle, in Computational Intelligence (IEEE SSCI), 2017 IEEE Symposium Series on. IEEE, 2017, pp. 2840–2847.10.1109/SSCI.2017.8285226
  26. [26] C. Zhang, Design and control of flapping wing micro air vehicles, 2016. [Online]. Available: http://oa.upm.es/44319/
  27. [27] M. Ferdaus, M. Pratama, S. G. Anavatti, M. A. Garratt, and Y. Pan, Generic evolving self-organizing neuro-fuzzy control of bio-inspired unmanned aerial vehicles, arXiv preprint arXiv:1802.00635, 2018.
  28. [28] A. J. Al-Mahasneh, S. Anavatti, and M. Garratt, Altitude identification and intelligent control of a flapping wing micro aerial vehicle using modified generalized regression neural networks, in Computational Intelligence (IEEE SSCI), 2017 IEEE Symposium Series on. IEEE, 2017.10.1109/SSCI.2017.8280951
  29. [29] T. S. Clawson, S. Ferrari, S. B. Fuller, and R. J. Wood, Spiking neural network (SNN) control of a flapping insect-scale robot, in Decision and Control (CDC), 2016 IEEE 55th Conference on. IEEE, 2016, pp. 3381–3388.10.1109/CDC.2016.7798778
  30. [30] L. Weng, M. Xia, K. Hu, and A. Wang, Micro Aerial Vehicle (MAV) Flapping Motion Control Using an Immune Network with Different Immune Factors,” International Journal of Advanced Robotic Systems, vol. 10, no. 8, p. 305, 2013.10.5772/56733
  31. [31] M. S. Couceiro, N. M. Ferreira, and J. T. Machado, Hybrid adaptive control of a dragonfly model, Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 2, pp. 893–903, 2012.10.1016/j.cnsns.2011.05.031
  32. [32] J. Kok and J. Chahl, A low-cost simulation platform for flapping wing MAVs, in SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics, 2015, pp. 94 290L–94 290L.10.1117/12.2084142
  33. [33] Z. J. Wang, The role of drag in insect hovering, Journal of Experimental Biology, vol. 207, no. 23, pp. 4147–4155, 2004.10.1242/jeb.01239
  34. [34] J. C. Bezdek, A convergence theorem for the fuzzy isodata clustering algorithms, IEEE transactions on pattern analysis and machine intelligence, no. 1, pp. 1–8, 1980.10.1109/TPAMI.1980.4766964
  35. [35] M. M. Ferdaus, M. Pratama, S. G. Anavatti, and M. A. Garratt, A generic self-evolving neuro-fuzzy controller based high-performance hexacopter altitude control system, arXiv preprint arXiv:1805.02508, 2018.10.1109/SMC.2018.00475
  36. [36] M. M. Ferdaus, S. G. Anavatti, M. A. Garratt, and M. Pratama, Development of a sliding mode control based adaptive fuzzy controller for a flapping flight, arXiv preprint arXiv:1806.02945, 2018.10.2478/jaiscr-2018-0027
Language: English
Page range: 99 - 109
Submitted on: Feb 5, 2018
Accepted on: Jul 18, 2018
Published on: Dec 31, 2018
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2018 Md Meftahul Ferdaus, Sreenatha G. Anavatti, Matthew A. Garratt, Mahardhika Pratama, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.