Have a personal or library account? Click to login
On Graph Mining With Deep Learning: Introducing Model R for Link Weight Prediction Cover

On Graph Mining With Deep Learning: Introducing Model R for Link Weight Prediction

Open Access
|Aug 2018

References

  1. [1] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates et al, Deep speech: Scaling up end-to-end speech recognition, arXiv preprint arXiv:1412.5567, 2014.
  2. [2] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556, 2014.
  3. [3] K. Yao, G. Zweig, M.-Y. Hwang, Y. Shi, and D. Yu, Recurrent neural networks for language understanding. in INTERSPEECH, 2013, pp. 2524–2528.10.21437/Interspeech.2013-569
  4. [4] O. Barkan and N. Koenigstein, Item2vec: neural item embedding for collaborative filtering, in Machine Learning for Signal Processing (MLSP), 2016 IEEE 26th International Workshop on. IEEE, 2016, pp. 1–6.10.1109/MLSP.2016.7738886
  5. [5] A. Grover and J. Leskovec, node2vec: Scalable feature learning for networks, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016, pp. 855–864.10.1145/2939672.2939754
  6. [6] D. Liben-Nowell and J. Kleinberg, The link-prediction problem for social networks, Journal of the Association for Information Science and Technology, vol. 58, no. 7, pp. 1019–1031, 2007.10.1002/asi.20591
  7. [7] M. Al Hasan, V. Chaoji, S. Salem, and M. Zaki, Link prediction using supervised learning, in SDM06: Workshop on Link Analysis, Counterterrorism and Security, 2006.
  8. [8] J. Zhao, L. Miao, J. Yang, H. Fang, Q.-M. Zhang, M. Nie, P. Holme, and T. Zhou, Prediction of links and weights in networks by reliable routes, Scientific Reports, vol. 5, 2015.10.1038/srep12261
  9. [9] L. A. Adamic and E. Adar, Friends and neighbors on the web, Social Networks, vol. 25, no. 3, pp. 211–230, 2003.10.1016/S0378-8733(03)00009-1
  10. [10] T. Murata and S. Moriyasu, Link prediction of social networks based on weighted proximity measures, in IEEE/WIC/ACM International Conference on Web Intelligence (WI). IEEE, 2007, pp. 85–88.10.1109/WI.2007.52
  11. [11] H. A. Taha, Operations Research: An Introduction (For VTU). Pearson Education India, 1982.
  12. [12] P. W. Holland, K. B. Laskey, and S. Leinhardt, Stochastic blockmodels: First steps, Social Networks, vol. 5, no. 2, pp. 109–137, 1983.10.1016/0378-8733(83)90021-7
  13. [13] C. Aicher, A. Z. Jacobs, and A. Clauset, Learning latent block structure in weighted networks, Journal of Complex Networks, p. cnu026, 2014.10.1093/comnet/cnu026
  14. [14] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, Distributed representations of words and phrases and their compositionality, in Advances in Neural Information Processing Systems, 2013, pp. 3111–3119.
  15. [15] T. Mikolov, W.-t. Yih, and G. Zweig, Linguistic regularities in continuous space word representations. in NAACL HLT, vol. 13, 2013, pp. 746–751.
  16. [16] Q. Le and T. Mikolov, Distributed representations of sentences and documents, in Proceedings of the 31st International Conference on Machine Learning (ICML-14), 2014, pp. 1188–1196.
  17. [17] B. Perozzi, R. Al-Rfou, and S. Skiena, Deepwalk: Online learning of social representations, in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2014, pp. 701–710.10.1145/2623330.2623732
  18. [18] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, Extracting and composing robust features with denoising autoencoders, in Proceedings of the 25th International Conference on Machine Learning. ACM, 2008, pp. 1096–1103.10.1145/1390156.1390294
  19. [19] G. E. Hinton and R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science, vol. 313, no. 5786, pp. 504–507, 2006.10.1126/science.1127647
  20. [20] X. Feng, Y. Zhang, and J. Glass, Speech feature denoising and dereverberation via deep autoencoders for noisy reverberant speech recognition, in Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. IEEE, 2014, pp. 1759–1763.10.1109/ICASSP.2014.6853900
  21. [21] C.-Y. Liou, W.-C. Cheng, J.-W. Liou, and D.-R. Liou, Autoencoder for words, Neurocomputing, vol. 139, pp. 84–96, 2014.10.1016/j.neucom.2013.09.055
  22. [22] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu, Convolutional neural networks for speech recognition, IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 22, no. 10, pp. 1533–1545, 2014.10.1109/TASLP.2014.2339736
  23. [23] A. Van den Oord, S. Dieleman, and B. Schrauwen, Deep content-based music recommendation, in Advances in Neural Information Processing Systems, 2013, pp. 2643–2651.
  24. [24] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, in Advances in Neural Information Processing Systems, 2012, pp. 1097–1105.
  25. [25] R. Collobert and J. Weston, A unified architecture for natural language processing: Deep neural networks with multitask learning, in Proceedings of the 25th International Conference on Machine Learning. ACM, 2008, pp. 160–167.10.1145/1390156.1390177
  26. [26] A. M. Elkahky, Y. Song, and X. He, A multi-view deep learning approach for cross domain user modeling in recommendation systems, in Proceedings of the 24th International Conference on World Wide Web. ACM, 2015, pp. 278–288.10.1145/2736277.2741667
  27. [27] R. Socher, Y. Bengio, and C. D. Manning, Deep learning for nlp (without magic), in Tutorial Abstracts of ACL 2012. Association for Computational Linguistics, 2012, pp. 5–5.
  28. [28] R. Socher, J. Bauer, C. D. Manning, and A. Y. Ng, Parsing with compositional vector grammars. in ACL (1), 2013, pp. 455–465.
  29. [29] R. Socher, A. Perelygin, J. Y.Wu, J. Chuang, C. D. Manning, A. Y. Ng, C. Potts et al., Recursive deep models for semantic compositionality over a sentiment treebank, in Proceedings of the Conference on Empirical Methods on Natural Language Processing (EMNLP), vol. 1631, 2013, p. 1642.
  30. [30] Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil, A latent semantic model with convolutional-pooling structure for information retrieval, in Proceedings of the 23rd ACM International Conference on Information and Knowledge Management. ACM, 2014, pp. 101–110.10.1145/2661829.2661935
  31. [31] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by back-propagating errors, Cognitive Modeling, vol. 5, no. 3, p. 1, 1988.
  32. [32] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, Efficient backprop, in Neural Networks: Tricks of the Trade. Springer, 2012, pp. 9–48.10.1007/978-3-642-35289-8_3
  33. [33] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, Online learning for matrix factorization and sparse coding, The Journal of Machine Learning Research, vol. 11, pp. 19–60, 2010.
  34. [34] S. Smale and D.-X. Zhou, Learning theory estimates via integral operators and their approximations, Constructive Approximation, vol. 26, no. 2, pp. 153–172, 2007.10.1007/s00365-006-0659-y
  35. [35] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol. 521, no. 7553, pp. 436–444, 2015.10.1038/nature14539
  36. [36] V. Colizza, R. Pastor-Satorras, and A. Vespignani, Reaction–diffusion processes and metapopulation models in heterogeneous networks, Nature Physics, vol. 3, no. 4, pp. 276–282, 2007.10.1038/nphys560
  37. [37] R. K. Pan, K. Kaski, and S. Fortunato, World citation and collaboration networks: uncovering the role of geography in science, Scientific Reports, vol. 2, 2012.10.1038/srep00902350935023198092
  38. [38] M. A. Porter, P. J. Mucha, M. E. Newman, and C. M. Warmbrand, A network analysis of committees in the us house of representatives, Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 20, pp. 7057–7062, 2005.10.1073/pnas.0500191102
  39. [39] T. Opsahl and P. Panzarasa, Clustering in weighted networks, Social Networks, vol. 31, no. 2, pp. 155–163, 2009.10.1016/j.socnet.2009.02.002
  40. [40] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard et al., Tensorflow: A system for large-scale machine learning. in Operating Systems Design and Implementation (OSDI), vol. 16, 2016, pp. 265–283.
  41. [41] F. M. Harper and J. A. Konstan, The movielens datasets: History and context, ACM Transactions on Interactive Intelligent Systems (TiiS), vol. 5, no. 4, p. 19, 2015.10.1145/2827872
Language: English
Page range: 21 - 40
Submitted on: Oct 20, 2017
Accepted on: Nov 13, 2017
Published on: Aug 20, 2018
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Yuchen Hou, Lawrence B. Holder, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.