Have a personal or library account? Click to login
Particle Swarm Optimization Based Fuzzy Clustering Approach to Identify Optimal Number of Clusters Cover

Particle Swarm Optimization Based Fuzzy Clustering Approach to Identify Optimal Number of Clusters

By: Min Chen and  Simone A. Ludwig  
Open Access
|Dec 2014

References

  1. [1] H. A. Edelstein, Introduction to data mining and knowledge discovery (3rd ed), Potomac, MD: Two Crows Corp. 1999.
  2. [2] B. Mirkin, Clustering: A Data Recovery Approach, Second Edition (Chapman & Hall/CRC Computer Science & Data Analysis).
  3. [3] R. B. Cattell, The description of personality: Basic traits resolved into clusters, Journal of Abnormal and Social Psychology, 38, 476-506,1943.10.1037/h0054116
  4. [4] S. Theodoridis, and K. Koutroubas, Pattern Recognition, Academic Press, 1999.
  5. [5] T. N. Pappas, An adaptive clustering algorithm for image segmentation, IEEE Trans. Signal process, vol. 40, pp.901-914, 199210.1109/78.127962
  6. [6] A. Likas, N. Vlassis, and J. Verbeek, The global k-means clustering algorithm (Technical Report), Computer Science Institute, University of Amsterdam, The Netherlands. ISA-UVA-01-02. 2001.
  7. [7] V. P. Guerrero-Bote, et al., Comparison of neural models for document clustering, Int. Journal of Approximate Reasoning, vol. 34, pp.287-305, 2003.10.1016/j.ijar.2003.07.012
  8. [8] G. L. Carl, A fuzzy clustering and fuzzy merging algorithm, Technical Report, CS-UNR-101, 1999.
  9. [9] L. A. Zadeh, Fuzzy sets, Information and Control, Vol. 8, pp. 338-353, 1965.10.1016/S0019-9958(65)90241-X
  10. [10] R. Babuska, Fuzzy Modelling for Control, Kluwer Academic, USA, 1998.
  11. [11] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, ISBN 0-306-40671-3, 1981.10.1007/978-1-4757-0450-1
  12. [12] J. C. Dunn, A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters, Journal of Cybernetics 3: 32-57, 1973.10.1080/01969727308546046
  13. [13] I. Gath and A. B. Geva, Unsupervised optimal fuzzy clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol 11(7), pp 773-781, 1989.10.1109/34.192473
  14. [14] J. C. Bezdek, C. Coray, R. Gunderson and J.Watson, Detection and characterization of cluster substructure i. linear structure: Fuzzy c-lines, SIAM Journal on Applied Mathematics, 40(2), 339-357.10.1137/0140029
  15. [15] J. Yu, and M. S Yang, A generalized fuzzy clustering regularization model with optimality tests and model complexity analysis, Fuzzy Systems, IEEE Transactions on 15.5 (2007): 904-915.10.1109/TFUZZ.2006.889957
  16. [16] Y. T. Kao, E. Zahara, I. W. Kao, A hybridized approach to data clustering, Expert Systems with Applications 34 (3), 1754-1762, 2008.10.1016/j.eswa.2007.01.028
  17. [17] D. N. Cao, J. C. Krzysztof, GAKREM: a novel hybrid clustering algorithm, Information Sciences 178, 4205-4227, 2008.10.1016/j.ins.2008.07.016
  18. [18] K. R. Zalik, An efficient k-means clustering algorithm, Pattern Recognition Letters 29, 1385-1391, 2008.10.1016/j.patrec.2008.02.014
  19. [19] K. Krishna, Murty, Genetic k-means algorithm, IEEE Transactions of System Man Cybernetics Part BCybernetics 29, 433-439, 1999.10.1109/3477.764879
  20. [20] U. Mualik, S. Bandyopadhyay, Genetic algorithm-based clustering technique, Pattern Recognition 33, 1455-1465, 2000.10.1016/S0031-3203(99)00137-5
  21. [21] M. Laszlo, S. Mukherjee, A genetic algorithm that exchanges neighboring centers for k-means clustering, Pattern Recognition Letters 28 (16), 2359-2366, 2007.10.1016/j.patrec.2007.08.006
  22. [22] P. S. Shelokar, V. K. Jayaraman, B. D. Kulkarni, An ant colony approach for clustering, Analytica Chimica Acta 509 (2), 187-195, 2004.10.1016/j.aca.2003.12.032
  23. [23] S. A. Ludwig, Clonal Selection based Fuzzy C-Means Algorithm for Clustering, Proceedings of Genetic and Evolutionary Computation Conference (ACM GECCO), Vancouver, BC, Canada, July 2014.10.1145/2576768.2598270
  24. [24] T. A. Runkler, and C. Katz. Fuzzy clustering by particle swarm optimization, Fuzzy Systems, 2006 IEEE International Conference on. IEEE, 2006.10.1109/FUZZY.2006.1681773
  25. [25] H. C. Liu, J. M. Yih, D. B Wu, S. W. Liu, Fuzzy Cmean clustering algorithms based on Picard iteration and particle swarm optimization, Education Technology and Training, 2008. and 2008 International Workshop on Geoscience and Remote Sensing. ETT and GRS 2008. International Workshop on. Vol. 2. IEEE, 2008.10.1109/ETTandGRS.2008.375
  26. [26] B. J. Zhao, An ant colony clustering algorithm, Machine Learning and Cybernetics, 2007 International Conference on. Vol. 7. IEEE, 2007.10.1109/ICMLC.2007.4370833
  27. [27] G. Gan, J.Wu, and Z. Yang, A genetic fuzzy k-Modes algorithm for clustering categorical data, Expert Systems with Applications 36.2 (2009): 1615-1620.10.1016/j.eswa.2007.11.045
  28. [28] F. Yang, T. Sun, and C. Zhang, An efficient hybrid data clustering method based on K-harmonic means and Particle Swarm Optimization, Expert Systems with Applications 36.6 (2009): 9847-9852.10.1016/j.eswa.2009.02.003
  29. [29] T. Niknam, B. Amiri, An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis, Applied Soft Computing, 10(1), 183-197.10.1016/j.asoc.2009.07.001
  30. [30] P. Melin, F. Olivas, O. Castillo, F. Valdez, J. Soria, and M. Valdez, Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic, Expert Systems with Applications 40, no. 8 (2013): 3196-3206.10.1016/j.eswa.2012.12.033
  31. [31] L. Y. Chuang, C. J. Hsiao, and C. H. Yang, Chaotic particle swarm optimization for data clustering, Expert systems with Applications 38.12 (2011): 14555-14563.10.1016/j.eswa.2011.05.027
  32. [32] H. Izakian, and A. Abraham, Fuzzy C-means and fuzzy swarm for fuzzy clustering problem, Expert Systems with Applications 38.3 (2011): 1835-1838.10.1016/j.eswa.2010.07.112
  33. [33] S. Das, A. Abraham, and A. Konar, Automatic kernel clustering with a multi-elitist particle swarm optimization algorithm, Pattern Recognition Letters, 29(5), 688-699, 2008.10.1016/j.patrec.2007.12.002
  34. [34] M. Chen and S. A. Ludwig, Fuzzy Clustering Using Automatic Particle Swarm Optimization, Proceedings of 2014 IEEE International Conference on Fuzzy Systems, Beijing, China, July 2014.10.1109/FUZZ-IEEE.2014.6891874
  35. [35] R. C. Eberhart and J. Kennedy, A New Optimizer using Particle Swarm Theory, In Proc. 6th Symp. Micro Machine and Human Science, Nagoya, Japan 1995, 29-43.
  36. [36] J. C. Bezdek, Cluster validity with fuzzy sets, (1973): 58-73.10.1080/01969727308546047
  37. [37] R. N. Dave, Validating fuzzy partitions obtained through c-shells clustering, Pattern Recognition Letters, 17(6), 613-623, 1996.10.1016/0167-8655(96)00026-8
  38. [38] Y. Fukuyama and M. Sugeno, A new method of choosing the number of clusters for the fuzzy c-means method, Proceeding of fifth fuzzy Syst. Sympo., pp.247-250, 1989.
  39. [39] X. L. Xie, and G. Beni, A validity measure for fuzzy clustering. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 13(8), 841-847, 1991.10.1109/34.85677
  40. [40] N. R. Pal, and J. C. Bezdek, On cluster validity for the fuzzy c-means model, Fuzzy Systems, IEEE Transactions on, 3(3), 370-379, 1995.10.1109/91.413225
  41. [41] K. L. Wu, and M. S. Yang, A cluster validity index for fuzzy clustering, Pattern Recognition Letters, 26(9), 1275-1291, 2005.10.1016/j.patrec.2004.11.022
  42. [42] A. Strehl, Relationship-based clustering and cluster ensembles for high-dimensional data mining, 2002.
  43. [43] W. Pedrycz and J. V. de Oliveira, A development of fuzzy encoding and decoding through fuzzy clustering, IEEE Trans. Instrum. Meas., vol. 57, no. 4, pp. 829?837, Apr. 2008.10.1109/TIM.2007.913809
  44. [44] A. Frank & A. Asuncion, UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science, 2010.
  45. [45] B. Balasko, J. Abonyi, and B. Feil. Fuzzy clustering and data analysis toolbox, Department of Process Engineering, University of Veszprem, Veszprem, 2005.
  46. [46] J. MacQueen, Some methods for classification and analysis of multivariate observations, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, 281-297, University of California Press, Berkeley, Calif., 1967.
  47. [47] L. Kaufman and P.J. Rousseeuw, Clustering by means of Medoids, in Statistical Data Analysis Based on the L1 Norm and Related Methods, edited by Y. Dodge, North- Holland, 405-416, 1987
Language: English
Page range: 43 - 56
Published on: Dec 30, 2014
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Min Chen, Simone A. Ludwig, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.