Have a personal or library account? Click to login
Maximising Accuracy and Efficiency of Traffic Accident Prediction Combining Information Mining with Computational Intelligence Approaches and Decision Trees Cover

Maximising Accuracy and Efficiency of Traffic Accident Prediction Combining Information Mining with Computational Intelligence Approaches and Decision Trees

Open Access
|Dec 2014

References

  1. [1] AAAM, 1985. Abbreviated Injury Scale 1985. Des Plaines IL: Association for the Advancement of Automotive Medicine.
  2. [2] Abdel-Aty M.A., Abdelwahab H.T., 2004. Predicting injury severity levels in traffic crashes: a modeling comparison, Journal of Transportation Engineering, vol. 130, pp. 204-210.10.1061/(ASCE)0733-947X(2004)130:2(204)
  3. [3] Abdelwahab, H.T., Abdel-Aty, M.A., 2001. Development of artificial neural network models to predict driver injury severity in traffic accidents at signalizes, Intersection Transportation Research Record issue 1746, pp. 6-13.10.3141/1746-02
  4. [4] Akaike, H., 1974. A new look at the statistical model identification, IEEE Transactions on Automatic Control 19(6): 716-72310.1109/TAC.1974.1100705
  5. [5] Akaike Hirotugu, 1980. Likelihood and the Bayes procedure, in Bernardo, J. M.; et al., Bayesian Statistics, Valencia: University Press, pp. 143-166.
  6. [6] Baker S.P., O’Neill B., Haddon Jr W., Long W.B., 1974. The Injury Severity Score: a method for describing patients with multiple injuries and evaluating emergency care, The Journal of Trauma (LippincottWilliams &Wilkins), vol. 14, pp. 187-196.10.1097/00005373-197403000-00001
  7. [7] Beshah T., Ejigu D., Kromer P., Snasel V., Platos J., Abraham A., 2012. Learning the Classification of Traffic Accident Types, Fourth International Conference on Intelligent Networking and Collaborative Systems, Bucharest, Romania, September 19th-21st, 2012, pp. 463-468.10.1109/iNCoS.2012.75
  8. [8] Breiman L., Friedman J.H., Olshen R.A., Stone, C.J., 1984. Classification and regression trees. Monterey, CA: Wadsworth & Brooks/Cole Advanced Books & Software.
  9. [9] Breiman Leo, 1996. Bagging predictors. Machine Learning 24(2): 123-140.10.1007/BF00058655
  10. [10] Breiman, Leo., 1998 Arcing classifiers, The Annals of Statistics, vol. 26, pp.801-849.10.1214/aos/1024691079
  11. [11] Breiman Leo., 2001 Random Forests. Machine Learning, volume 45, pp.5-32.10.1023/A:1010933404324
  12. [12] Catell, R.B., 1966. The scree test for the number of factors. Multivariate Behavioral Research, 1,245-27610.1207/s15327906mbr0102_1026828106
  13. [13] Chang, L-.Y,Wang H.-W., 2006. Analysis of traffic injury severity: An application of non-parametric classification tree techniques, Accident Analysis and Prevention, vol. 38, pp. 1019-1027.10.1016/j.aap.2006.04.00916735022
  14. [14] Chang L.Y., Chien J.-T, 2013 Analysis of driver injury severity in truck-involved accidents using a non-parametric classification tree-model, Safety Science, vol. 51, pp. 17-22.10.1016/j.ssci.2012.06.017
  15. [15] Chong M.M., Abraham A., Paprzycki M., 2004. Traffic accident analysis using decision trees and neural networks, IADIS International Conference on Applied Computing, Portugal, IADIS Press, Pedro Isaias et al. (Eds.), ISBN: 9729894736, Vol. 2, pp. 39-42.
  16. [16] Delen D., Sharda R., Bessonov M., 2006. Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks, Accident Analysis and Prevention, vol. 38, pp. 434-444.10.1016/j.aap.2005.06.02416337137
  17. [17] Devijver P.A., Kittler J. 1982. Pattern Recognition: A Statistical Approach, Prentice-Hall, London, U.K.
  18. [18] Fx GarcL, Miguel GarcTorres, BeleliBatista, Jos Moreno-Pz, J. Marcos Moreno-Vega: Solving feature subset selection problem by a Parallel Scatter Search. European Journal of Operational Research 169(2): 477-489 (2006)10.1016/j.ejor.2004.08.010
  19. [19] Fisher, R. A., 1936. The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics 7 (2): 179-188.10.1111/j.1469-1809.1936.tb02137.x
  20. [20] Gini C., 1909. Concentration and dependency ratios (in Italian). English translation in Rivista di Politica Economica, 87 (1997), 769-789.
  21. [21] Gini C., 1912. ”Italian: VariabilitutabilitVariability and Mutability’, C. Cuppini, Bologna, 156 pages. Reprinted in Memorie di metodologica statistica (Ed. Pizetti E, Salvemini, T). Rome: Libreria Eredi Virgilio Veschi (1955).
  22. [22] Glover F., 1977. Heuristics for integer programming using surrogate constraints. Decision Sciences, vol. 8, pp. 156-166.10.1111/j.1540-5915.1977.tb01074.x
  23. [23] Goodman, SN 1999. Toward Evidence-Based Medical Statistics. 1: The P Value Fallacy. Annals of Internal Medicine 130: 995-100410.7326/0003-4819-130-12-199906150-0000810383371
  24. [24] Grossberg S., 1987. Competitive learning: from interactive activation to adaptive resonance, Cognitive Science, vol. 11, pp. 23-63.10.1111/j.1551-6708.1987.tb00862.x
  25. [25] Hall M. A., 1998. Correlation-based Feature Subset Selection for Machine Learning. Hamilton, New Zealand
  26. [26] Hall Mark, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, Ian H. Witten 2009; The WEKA Data Mining Software: An Update; SIGKDD Explorations, Volume 11, Issue 1.10.1145/1656274.1656278
  27. [27] Hardin J., Hilbe J., 2007. Generalized Linear Models and Extensions (2nd edition). College Station: Stata Press.
  28. [28] Haykin S., 1999. Neural Networks: A Comprehensive Foundation (2nd Edition), Prentice-Hall, Upper Saddle River, NJ.
  29. [29] Heckerman D. 1997. Bayesian Networks for Data Mining. Data Mining and Knowledge discovery, 1(1) : 79-119, 1997.
  30. [30] Kaiser, H. F., 1960 The application of electronic computer to factor analysis. Educational and Psychological Measurement, 20, 141-151.10.1177/001316446002000116
  31. [31] Khattak A., Rocha M., 2003. Are SUVs “supremely unsafe vehicles”? Analysis of rollovers and injuries with sport utility vehicles, Transportation Research Record 1840, pp. 167-177.10.3141/1840-19
  32. [32] Kohavi R., John G. H., 1997. Wrappers for feature subset selection, Artificial Intelligence 97 (1-2) 273-32410.1016/S0004-3702(97)00043-X
  33. [33] Langley P., Iba W., Thompson K., 1992. An analysis of Bayesian Classifiers. In Proc. Of the 10th National Conf. on Artificial Intelligence, pages 223-228.
  34. [34] Liu H., Setiono R., 1996. A probabilistic approach to feature selection - A filter solution. In: 13th International Conference on Machine Learning, 319-327
  35. [35] Ma J., Kockelman KM., Damien P. 2008 A multivariate Poisson-lognormal regression model for prediction of crash counts by severity, using Bayesian methods. Accident Analysis and Prevention 40:964-975 (2008).10.1016/j.aap.2007.11.002
  36. [36] McCullagh P., Nelder J., 1989. Generalized Linear Models, London: Chapman and Hall, London, U.K.10.1007/978-1-4899-3242-6
  37. [37] MCMVTAR 1976 Manual on Classification of Motor Vehicle Traffic Accidents-Revision of 016.11970, Third Edition, National Safety Council, Chicago, Illinois, 1976.
  38. [38] Milton Jc, Shankar Vn, FL Mannering Fl Highway accident severities and the mixed logit model: An exploratory empirical analysis Accident Analysis & Prevention 40 (??), 260-26610.1016/j.aap.2007.06.006
  39. [39] Molina L.C., Belanche L., and Nebot A., 2002. Feature Selection Algorithms: A survey and Experimental Evaluation. In Proc. Of the 2002 IEEE Intl. Conf. on Data Mining.
  40. [40] Mujalli R.O., J. de Ona, 2012. Injury severity models for motor vehicle accidents: a review, Proceedings of the ICE - Transport, vol. 166, pp. 255-270.10.1680/tran.11.00026
  41. [41] Mussone L., Ferrari A., Oneta M., 1999. An analysis of urban collisions using an artificial intelligence model, Accident Analysis and Prevention, vol. 31, pp. 705-718.10.1016/S0001-4575(99)00031-7
  42. [42] Pearson, K., 1901. On Lines and Planes of Closest Fit to Systems of Points in Space. Philosophical Magazine, vol. 2, pp 559-572.10.1080/14786440109462720
  43. [43] Popkin C.L., Campbell B.J. Hansen A.R., and Stewart J.R., 1991. Analysis of the accuracy of the existing KABCO injury scale, Chapel Hill, NC: University of North Carolina Highway Safety Research Center e-archives scan.
  44. [44] Quddus M.A., Ison S.G., 2011. Predicting accident frequency at their severity levels and its application in site ranking using a two-stage mixed multivariate model, Accident Analysis & Prevention, vol. 43, pp. 1979-1990.10.1016/j.aap.2011.05.016
  45. [45] Quinlan, J. R., 1986. Induction of Decision Trees. Machine Learning 1: 81-106, Kluwer Academic Publishers.10.1007/BF00116251
  46. [46] Quinlan, J. R.,1993 C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo, CA, 1993.
  47. [47] Ramoni M., and Sebastiani P., 2001. Robust Bayes Classifier. Artificial Intelligence, 125: 209-226 10.1016/S0004-3702(00)00085-0
  48. [48] Rezaie Moghaddam F., Afandizadeh Sh., Ziyadi M., 2011. Prediction of accident severity using artificial neural networks, International Journal of Civil Engineering, vol. 9,pp. 41-49.
  49. [49] Rumelhart D.E., Hinton G.E.,Williams R. J., 1986. Learning internal representations by error propagation, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1: Foundations, Rumelhart D.E., McClelland J.L., and the PDP research group. (eds), MIT Press, 1986
  50. [50] Savolainen, P.T., Mannering, F.L., Lord, D., and M.A. Quddus, 2011. “The Statistical Analysis of Highway Crash-Injury Severities: A Review and Assessment of Methodological Alternatives”, Accident Analysis and Prevention, Vol. 43, No. 5, 2011, pp. 1666-1676.10.1016/j.aap.2011.03.025
  51. [51] Schwarz, Gideon E. 1978. Estimating the dimension of a model. Annals of Statistics 6 (2): 461-46410.1214/aos/1176344136
  52. [52] Shanthi S., Geetha Ramani, 2012. Feature relevance analysis and classification of road traffic accident data through data mining techniques, Proceedings of the World Congress on Engineering and Computer Science (WCECS 2012), October 24th-26th, 2012, San Francisco, U.S.A., Vol I, pp. 122-127.
  53. [53] Shanti S., Geetha Ramani, 2012. Vehicle Safety Device (Airbag) Specific Classification of Road Traffic Accident Patterns through Data Mining Techniques. ACITY (2) 2012: 433-44310.1007/978-3-642-31552-7_45
  54. [54] Sohn, S.Y., Shin, H.W., 2001. Data mining for road traffic accident type classification, Ergonomics, vol. 44, pp. 107-117.10.1080/00140130120928
  55. [55] Sohn S.Y., Lee S.H., 2003. Data fusion, ensemble and clustering to improve the classification accuracy for the severity of road traffic accidents in Korea, Safety Science, vol. 41, pp. 1-14.10.1016/S0925-7535(01)00032-7
  56. [56] Spearman C., 1904. General Intelligence, objectively determined and measured. Am J Psychol 15:202-93.10.2307/1412107
  57. [57] Specht D. 1998. Probabilistic neural networks for classification, mapping, and associative memory, in Proceedings of the IEEE International Conference on Neural Networks, New York, U.S.A, pp. 525-532 (vol. 1).
  58. [58] Tambouratzis Tatiana, Souliou Dora, Chalikias Miltiadis S., Gregoriades Andreas: Combining probabilistic neural networks and decision trees for maximally accurate and efficient accident prediction. IJCNN 2010: 1-810.1109/IJCNN.2010.5596610
  59. [59] Tavakoli Kashani A., Shariat-Mohaymany A., Ranjbari A., 2012. Analysis of factors associated with traffic injury severity on rural roads in Iran, Journal of Injury and Violence Research, vol. 4, pp. 36-4110.5249/jivr.v4i1.67329127921502788
  60. [60] Vilalta R., Drissi Y., A perspective view and survey of meta-learning, Artificial Intelligence Review, VOL. 18, PP. 77-95, 200210.1023/A:1019956318069
  61. [61] Wang C., Quddus M.A., Ison S.G., 2011. Predicting accident frequency at their severity levels and its application in site ranking using a two-stage mixed multivariate model, Accident Analysis & Prevention, vol. 43, pp.1979-199010.1016/j.aap.2011.05.01621819826
  62. [62] Worku Y.M., Deogratias E., Deo C., Maher Q. 2013, Exploring factors contributing to injury severity at freeway merging and diverging locations in Ohio. Accident Analysis & Prevention Volume 55, June 2013, Pages 202-21010.1016/j.aap.2013.03.008
  63. [63] Zadeh, L.A., 1965. Fuzzy sets, Information and Control, vol. 8, pp. 338-353 10.1016/S0019-9958(65)90241-X
Language: English
Page range: 31 - 42
Published on: Dec 30, 2014
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Tatiana Tambouratzis, Dora Souliou, Miltiadis Chalikias, Andreas Gregoriades, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.