Have a personal or library account? Click to login
On the Influence of Topological Characteristics on Robustness of Complex Networks Cover

On the Influence of Topological Characteristics on Robustness of Complex Networks

Open Access
|Dec 2014

References

  1. [1] R. Albert and A.-L. Barabási, “Statistical mechanics of complex networks,” Reviews of Modern Physics, vol. 74, pp. 47-97, 2002.10.1103/RevModPhys.74.47
  2. [2] U. Alon, Introduction to Systems Biology: Design Principles of Biological Circuits. London: Chapman and Hall, 2007.
  3. [3] S. N. Dorogovtsev and J. F. F. Mendes, Evolution of Networks: From Biological Nets to the Internet andWWW. Oxford: Oxford University Press, January 2003.
  4. [4] F. Kepes (Ed), Biological Networks. Singapore: World Scientific, 2007.
  5. [5] J. Park and M. E. J. Newman, “Statistical mechanics of networks,” Physical Review E, vol. 70, no. 6, pp. 066 117+, Dec 2004. [Online]. Available: http://dx.doi.org/10.1103/PhysRevE.70.06611710.1103/PhysRevE.70.066117
  6. [6] M. Piraveenan, M. Prokopenko, and A. Y. Zomaya, “Assortative mixing in directed biological networks,” IEEE/ACM Transactions on computational biology and bioinformatics, vol. 9(1), pp. 66-78, 2012.10.1109/TCBB.2010.80
  7. [7] M. Piraveenan, M. Prokopenko, and L. Hossain, “Percolation centrality: Quantifying graphtheoretic impact of nodes during percolation in networks,” PloS one, vol. 8, no. 1, p. e53095, 2013.10.1371/journal.pone.0053095
  8. [8] M. Piraveenan, M. Prokopenko, and A. Zomaya, “On congruity of nodes and assortative information content in complex networks,” Networks and Heterogeneous Media (NHM), vol. 3, no. 10.3934/nhm.2012.7.441, pp. 441-461, 2012.
  9. [9] R. V. Sol´e and S. Valverde, “Information theory of complex networks: on evolution and architectural constraints,” in Complex Networks, ser. Lecture Notes in Physics, E. Ben-Naim, H. Frauenfelder, and Z. Toroczkai, Eds. Springer, 2004, vol. 650.
  10. [10] R. Albert, H. Jeong, and A.-L. Barab´asi, “Error and attack tolerance of complex networks,” Nature, vol. 406, pp. 378-382, 2000.10.1038/35019019
  11. [11] A.-L. Barabáasi, “Scale-free networks: A decade and beyond,” Science, vol. 325, no. 5939, pp. 412-413, 2009.
  12. [12] A.-L. Barabáasi, R. Albert, and H. Jeong, “Scalefree characteristics of random networks: The topology of the world-wide web,” Physica A, vol. 281, pp. 69-77, 2000.10.1016/S0378-4371(00)00018-2
  13. [13] A.-L. Barabáasi and E. Bonabeau, “Scale-free networks,” Scientific American, vol. 288, pp. 50-59, 2003.10.1038/scientificamerican0503-6012701331
  14. [14] A. Cavagna, A. Cimarelli, I. Giardina, G. Parisi, R. Santagati, F. Stefanini, and M. Viale, “Scale-free correlations in bird flocks,” 2009, arXiv:0911.4393. [Online]. Available: http://arxiv.org/abs/0911.4393
  15. [15] M. Mitchell, “Complex systems: Network thinking,” Artificial Intelligence, vol. 170, no. 18, pp. 1194-1212, 2006.
  16. [16] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’ networks,” Nature, vol. 393, pp. 440-442, 1998.10.1038/309189623998
  17. [17] A. Jamakovic and S. Uhlig, “Influence of the network structure on robustness,” in Networks, 2007. ICON 2007. 15th IEEE International Conference on. IEEE, 2007, pp. 278-283.10.1109/ICON.2007.4444099
  18. [18] M. E. J. Newman, “Mixing patterns in networks,” Physical Review E, vol. 67, no. 2, p. 026126, 2003.
  19. [19] M. Piraveenan, M. Prokopenko, and A. Y. Zomaya, “Local assortativeness in scale-free networks,” Europhysics Letters, vol. 84, no. 2, p. 28002, 2008.
  20. [20] --, “Local assortativeness in scale-free networks - addendum,” Europhysics Letters, vol. 89, no. 4, p. 49901, 2010.
  21. [21] V. Latora and M. Marchiori, “Efficient behavior of small-world networks,” Physical Review Letters, vol. 87, no. 19, p. 198701, 2001.
  22. [22] M. E. J. Newman, “Models of the small world,” Journal of Statistical Physics, vol. 101, no. 3, pp. 819-841, November 2000. [Online]. Available: http://dx.doi.org/10.1023/A:102648580714810.1023/A:1026485807148
  23. [23] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-world networks,” Nature, vol. 393, no. 6684, pp. 440-442, June 1998. [Online]. Available: http://dx.doi.org/10.1038/3091810.1038/309189623998
  24. [24] R. Albert, H. Jeong, and A.-L. Barab´asi, “Error and attack tolerance of complex networks,” Nature, vol. 406, no. 6794, pp. 378-382, 2000.
  25. [25] P. Crucittia, V. Latora, M. Marchiori, and A. Rapisarda, “Error and attack tolerance of complex networks,” Physica A, vol. 340, p. 388394, 2004.
  26. [26] A. H. Dekker and B. D. Colbert, “Network robustness and graph topology,” in Proceedings of the 27th Australasian conference on Computer science - Volume 26, ser. ACSC ’04. Darlinghurst, Australia, Australia: Australian Computer Society, Inc., 2004, pp. 359-368.
  27. [27] M. Piraveenan, G. Thedchanamoorthy, S. Uddin, and K. S. K. Chung, “Quantifying topological robustness of networks under sustained targeted attacks,” Social Network Analysis and Mining, 2013. [Online]. Available: 10.1007/s13278-013-0118-810.1007/s13278-013-0118-8
  28. [28] J. A. Hanley and B. J. Mcneil, “The meaning and use of the area under a receiver operating characteristic (ROC) curve.” Radiology, vol. 143, no. 1, pp. 29-36, Apr. 1982.10.1148/radiology.143.1.70637477063747
  29. [29] E. Kreyszig, Advanced Engineering Mathematics, 9th Edition. John Wiley, December 2005.
  30. [30] M. E. J. Newman, “Assortative mixing in networks,” Physical Review Letters, vol. 89, no. 20, p. 208701, 2002.
  31. [31] M. Piraveenan, S. Uddin, and K. S. K. Chung, “Measuring topological robustness of networks under sustained targeted attacks,” in 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. New York: IEEE Computer Society, 2012.10.1109/ASONAM.2012.17
  32. [32] S. Sarkar and A. Dong, “Characterizing modularity, hierarchy and module interfacing in complex design systems,” in ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE2011), vol. 9: 23rd International Conference on Design Theory and Methodology; 16th Design for Manufacturing and the Life Cycle Conference. New York: ASME, 2011, pp. 375-384.
  33. [33] J. T. Lizier, M. Piraveenan, D. Pradhana, M. Prokopenko, and L. S. Yaeger, “Functional and structural topologies in evolved neural networks,” in Advances in Artificial Life: Tenth European Conference on Artificial Life (ECAL ’09), ser. LNCS/LNAI. Springer, 2009, vol. 5777-5778.
  34. [34] S. Milgram, “The small world problem,” Psychology Today, vol. 1, p. 61, 1967. 10.1037/e400002009-005
Language: English
Page range: 89 - 100
Published on: Dec 30, 2014
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Dharshana Kasthurirathna, Mahendra Piraveenan, Gnanakumar Thedchanamoorthy, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.