Have a personal or library account? Click to login
Pulse Shape Discrimination of Neutrons and Gamma Rays Using Kohonen Artificial Neural Networks Cover

Pulse Shape Discrimination of Neutrons and Gamma Rays Using Kohonen Artificial Neural Networks

Open Access
|Dec 2014

References

  1. [1] R. T. Kouzes, The 3He Supply Problem, Report 413 No. PNNL-18388, Pacific 414 Northwest National Laboratory, Richland, WA, 2009
  2. [2] A. Enqvist, placeI. Pzsit, S. Avdic, Sample characterization using both neutron and gamma multiplicities, Nuclear Instruments & Methods A, vol. 615, pp. 62-69, 201010.1016/j.nima.2010.01.022
  3. [3] V. L. Romodanov, V. K. Sakharov, A. G. Belevitin, V. V. Afanas’ev, I. V. Mukhamad’varov, D. N. Chernikov, Computational-experimental studies of a facility for detecting fissile materials in airports, Atomic Energy, vol. 105, pp. 118-123, 200810.1007/s10512-008-9074-1
  4. [4] Y. N. Barmakov, E. P. Bogolyubov, O. V. Bochkarev et al., 2011, System of combined active and passive control of fissile materials and their nuclide composition in nuclear wastes, International Journal of Nuclear Energy Science and Technology, vol. 6, pp. 127-135, 201110.1504/IJNEST.2011.041646
  5. [5] D. Chernikova, V. Romodanov, V. Sakharov, A. Isakova, Analysis of 235U, 239Pu and 241Pu content in a spent fuel assembly using lead slowing down spectrometer and time intervals matrix, Journal of Nuclear Materials Management, vol.40, pp. 9-18, 2012
  6. [6] D. Chernikova, V. Romodanov, V. Sakharov, Development of the neutron-gamma-neutron (NGN) approach for the fresh and spent fuel assay, the 53rd Annual Meeting of the Institute of Nuclear Materials Management, Orlando, Florida USA, July 2012
  7. [7] S. A. Pozzi, M. M. Bourne, S. D. Clarke, Pulse shape discrimination in the plastic scintillator EJ-299-33, Nuclear Instruments and Methods in Physics Research Section A, vol. 723, 21 pp. 19-23, 201310.1016/j.nima.2013.04.085
  8. [8] F. D. Brooks, A scintillation counter with neutron and gamma-ray discriminators, Nuclear Instruments and Methods, vol. 4, pp. 151-163, 195910.1016/0029-554X(59)90067-9
  9. [9] F. T. Kuchnir, F. J. Lynch, Time dependence of scintillations and the effect on pulse-shape discrimination, IEEE Transactions on Nuclear Science, vol. 15, pp. 107 -113, 196810.1109/TNS.1968.4324923
  10. [10] P. Sperr, H. Spieler, M. R. Maier, D. Evers, A simple pulse-shape discrimination circuit, Nuclear Instruments and Methods A, vol. 116, pp. 55-59, 197410.1016/0029-554X(74)90578-3
  11. [11] S. Marrone, D. Cano-Ott, N. Colonna, C. Domingo, F. Gramegna, E. M. Gonzalez, F. Gunsing, M. Heil, F. Kappeler, Pulse shape analysis of liquid scintillators for neutron studies, Nuclear Instruments and Methods in Physics Research A, vol. 490, pp. 299-307, 200210.1016/S0168-9002(02)01063-X
  12. [12] B. D.Mellow, M. D. Aspinall, R. O. Mackin, M. J. Joyce, A. J. Peyton, Digital discrimination of neutrons and gamma-rays in liquid scintillators using pulse gradient analysis, Nuclear Instruments and Methods A, vol. 578, pp. 191-197, 200710.1016/j.nima.2007.04.174
  13. [13] D. I. Shippen, M.J. Joyce, M. D. Aspinall, A wavelet packet transform inspired method of neutron-gamma discrimination, IEEE Transactions on Nuclear Science, vol. 57, pp. 2617 -2624, 201010.1109/TNS.2010.2044190
  14. [14] G. Liu, M. J. Joyce, X. Ma, M. D. Aspinall, A digital method for the discrimination of neutrons and gamma rays with organic scintillation detectors using frequency gradient analysis, IEEE Transactions on Nuclear Science, vol. 57, pp. 1682 -1691, 201010.1109/TNS.2010.2044246
  15. [15] D. Wolski, M. Moszynski, T. Ludziejewski, A. Johnson, W. Klamra, O. Skeppstedt, Comparison of n-_ discrimination by zero-crossing and digital charge comparison methods, Nuclear Instruments and Methods A, vol. 360, pp. 584-592, 199510.1016/0168-9002(95)00037-2
  16. [16] I. V. Muhamadyarov, Nondestructive testing and detection of fissile and radioactive materials in systems with pulsed neutron sources and digital processing of the experimental data, PhD Dissertation, Russian State Library Electronic Catalogue (OPAC), 2009
  17. [17] K. A. A. Gamage, M. J. Joyce, N. P. Hawkes, A comparison of four different digital algorithms for pulse-shape discrimination in fast scintillators, Nuclear Instruments and Methods A, vol. 642, pp. 78-83, 201110.1016/j.nima.2011.03.065
  18. [18] R. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning representations by back propagating errors, Nature, vol. 323, pp. 533-536, 198610.1038/323533a0
  19. [19] M. Riedmiller, H. Braun, A direct adaptive method for faster backpropagation learning: the rprop algorithm, Proceedings of the IEEE Conference on Neural Networks, San Francisci, CA, March 28th-April 1st , 1993, pp. 586-591, 1993
  20. [20] M. Moller, A scaled conjugate gradient algorithm for fast supervised learning, Neural Networks, vol. 6, pp. 525-533, 199310.1016/S0893-6080(05)80056-5
  21. [21] Z. Cao, L. F. Miller, M. Buckner, Implementation of dynamic bias for classifiers, Nuclear Instruments and Methods A, vol. 416, pp. 438-445, 199810.1016/S0168-9002(98)00654-8
  22. [22] B. Esposito, L. Fortuno, A. Rizo, Neural neutron/ gamma discrimination in organic scintillators for fusion applications, Proceedings of the 2004 IEEE International Joint Conference on Neural Networks, Budapest, Hungary, July 25 29, 2004, vol. 4, pp. 2931-2936, 2004
  23. [23] P. Guazzoni, F. Previdi, S. Russo, M. Sassi, S. M. Saravesi, Pulse shape analysis using subspace identification methods and particle identification using neural networks in CsI(T1) scintillators, Proceedings of the IEEE Nuclear Science Symposium and Medical imaging, Puerto Rico, October 23th -29th, 2005, vol. 3, pp. 1341-1345, 2005
  24. [24] D. Wisniewski, M. Wisniewska, P. Bruyndonckx, M. Krieguer, S. Tavernier, O. Devroede, C.
  25. Lemaitre, J. B. Mosset, C. Morel, Digital pulse shape discrimination methods for phoswich detectors, Proceedings of the IEEE Nuclear Science Symposium and Medical imaging, Puerto Rico, October 23th -29th, 2005, vol. 5, pp. 2979-2983, 2005
  26. [25] L. Bertalot, B. Esposito, Y. Kascuck, D. Marocco, M. Riva, A. Rizzo, D. Skopintsev, Fast digitizing techniques applied to scintillation detectors, Nuclear Physics B - Proceedings supplement of the Proceedings of the 9th Topical Seminar on innovative Particle and Radiation Detectors, May 23rd-26th, 2004, Siena, Italy, 2004, vol. 150, pp. 78-81, 200610.1016/j.nuclphysbps.2004.07.003
  27. [26] J. Gill, T. Persson, K. Sjogren, K. Sols, N. Sundstrom, S. Wranne, Identification of ions by pulseshape analysis and evaluation of Lyso scintillator crystal, Technical Report, Chalmers University of Technology, Goteborg, Sweden, 2008
  28. [27] G. Liu, M. D. Aspinall, X. Ma, M. J. Joyce, An investigation of the digital discrimination of neutron and _ rays with organic scintillation detectors using a artificial neural network, Nuclear Instruments and Methods in Physics Research A, vol. 607, pp. 620-628, 200910.1016/j.nima.2009.06.027
  29. [28] E. Ronchi, P. A. Soderstrom, J. Nyberg, E. Andersson Sunden, S. Conroy, G. Ericsson, C. Hellesen, M. Gatu Johnson, M. Weiszflog, An artificial neural network based neutron-gamma discrimination and pile-up rejection framework for the BC-501 scintillation detector, Nuclear Instruments and Methods in Physics Research A, vol. 610, pp. 534-539, 200910.1016/j.nima.2009.08.064
  30. [29] R. Jimenez, M. Sanchez-Raya, J. A. Gomez- Galan, J. L. Flores, J. A. Duenas, I. Martel, Implementation of a neural network for digital pulse shape analysis on FPGA for on-line identification of heavy ions, Nuclear Instruments and Methods in Physics Research A, vol. 674, pp. 99-104, 201210.1016/j.nima.2012.01.034
  31. [30] N. Yildiz, S. Akkoyun, Neural network consistent empirical physical formula construction for neutron-gamma discrimination in gamma ray tracking, Annals of Nuclear Energy, vol. 51, pp. 10-17, 201310.1016/j.anucene.2012.07.042
  32. [31] T. Kohonen, Learning vector quantization for pattern recognition, Report TKK-F-A601, Helsinki University of Technology, Espoo, Finland, 1986
  33. [32] T. Kohonen, Self-organized formation of topologically correct feature maps, Biological Cybernetics, vol. 43, no. 1, pp. 59-69, 198210.1007/BF00337288
  34. [33] MATLAB R2009a, Mathworks, February 2009
  35. [34] D. Chernikova, K. Axell, I. Pzsit, A. Nordlund, R. Sarwar, A direct method for evaluating the concentration of boric acid in a fuel pool using scintillation detectors for joint-multiplicity measurements, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 714, pp. 90-97, 201310.1016/j.nima.2013.02.021
  36. [35] T. Tambouratzis, D. Chernikova, I. Pzsit, A comparison of artificial neural network performance: the case of neutron/gamma pulse shape discrimination, 2013 IEEE Symposium Series on Computational Intelligence (CISDA), Singapore, April 16th-19th, 2013, pp. 88-95, 201310.1109/CISDA.2013.6595432
  37. [36] T. Kohonen, Learning vector quantization, The handbook of brain theory and neural networks (M.A. Arbib, editor), MIT Press, Cambridge, MA, pp. 537-540. 1995
  38. [37] T. Kohonen, Improved versions of learning vector quantization, Proceedings of the International Joint Conference on Neural Networks, San Diego, California, June 17th, 1990, vol. 1, pp. 545-550, 199010.1109/IJCNN.1990.137622
  39. [38] T. Kohonen, J. Hynninen, J. Kangas, J. Laaksonen, K. Torkkola, LVQ PAK: the learning vector quantization programming package, Report A30, Helsinki University of Technology, Laboratory of Computer and Information Science, Espoo, Finland, 1996
  40. [39] T. Kohonen, The self-organizing map.Proceedings of the IEEE, vol. 78, no. 9, pp. 1464-1480, 199010.1109/5.58325
  41. [40] T. Kohonen, Statistical pattern recognition revisited, Advanced Neural Computers, pp. 137-144, 199010.1016/B978-0-444-88400-8.50020-0
  42. [41] C. Zhu, J. Wang, T. Wang, Analysis of learning vector quantization algorithms for pattern classification, International Conference on Acoustics, Speech, and Signal Processing, Detroit, MI, May 9th12th, 1995, vol. 5, pp. 34713474, 1995
  43. [42] M. T. Hagan, H. B. Demuth, M. Beale, Neural Networks Design, PWS Publishing, CO, U.S.A., 1996
  44. [43] T. Kohonen, SelfOrganizing Maps. Springer, Berlin, 199510.1007/978-3-642-97610-0
  45. [44] S. Haykin, Selforganizing maps (chapter 9), in Neural Networks A Comprehensive Foundation (2nd ed.), PrenticeHall, 1999
  46. [45] A. Ultsch, Emergence in selforganizing feature maps, in H. Ritter, R. Haschke (eds), Proceedings of the 6th International Workshop on SelfOrganizing Maps (WSOM ’07). Bielefeld, Germany, 2007
  47. [46] S. Kaski, Data Exploration Using SelfOrganizing Maps. PhD thesis, Helsinki University of Technology, Espoo, Finland, 1997
  48. [47] A. Hmlinen, Selforganizing map and reduced kernel density estimation, PhD thesis, University of Jyvskyl, Jyvskyl, Finland, 1995
  49. [48] H. ShahHosseini, R. Reza, TASOM: a new time adaptive selforganizing map, IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics, vol. 33, pp. 271-282, 200310.1109/TSMCB.2003.81044218238177
  50. [49] D. Alahakoon, S. K. Halgamuge, B. Sirinivasan, Dynamic self organizing maps with controlled growth for knowledge discovery, IEEE Transactions on Neural Networks, Special Issue on Knowledge Discovery and Data Mining, vol. 11, pp. 601614, 200010.1109/72.84673218249788
  51. [50] N. V. Chawla, Data Mining for Imbalanced Datasets: An Overview, pp. pages 875886, in O. Maimon, L. Rokach (eds), Data Mining and Knowledge Discovery Handbook, Springer, 2010 10.1007/978-0-387-09823-4_45
Language: English
Page range: 77 - 88
Published on: Dec 30, 2014
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Tatiana Tambouratzis, Dina Chernikova, Imre Pzsit, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.