Have a personal or library account? Click to login
Dsmk-Means “Density-Based Split-And-Merge K-Means Clustering Algorithm” Cover

Dsmk-Means “Density-Based Split-And-Merge K-Means Clustering Algorithm”

Open Access
|Dec 2014

Abstract

Clustering is widely used to explore and understand large collections of data. K-means clustering method is one of the most popular approaches due to its ease of use and simplicity to implement. This paper introduces Density-based Split- and -Merge K-means clustering Algorithm (DSMK-means), which is developed to address stability problems of standard K-means clustering algorithm, and to improve the performance of clustering when dealing with datasets that contain clusters with different complex shapes and noise or outliers. Based on a set of many experiments, this paper concluded that developed algorithms “DSMK-means” are more capable of finding high accuracy results compared with other algorithms especially as they can process datasets containing clusters with different shapes, densities, or those with outliers and noise.

Language: English
Page range: 51 - 71
Published on: Dec 30, 2014
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Raed T. Aldahdooh, Wesam Ashour, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.