Have a personal or library account? Click to login
In Search of Insight: My Life as an Architectural Explorer Cover

In Search of Insight: My Life as an Architectural Explorer

Open Access
|Nov 2025

References

  1. Ackley, D. H.; Hinton, G. E.; and Sejnowski, T. J. 1985. A Learning Algorithm for Boltzmann Machines. Cognitive Science. 9: 147-169.
  2. Adler, A.; Dasgupta, P.; Depalma, N.; Eslami, M.; Freedman, R. G.; Laird, J. E.; Lebiere, C.; Lohan, K.; Mead, R.; Roberts, M.; Rosenbloom, P. S.; Senft, E.; Stein, F.; Williams, T.; Wray, K. H.; Yaman, F.; and Zilberstein, S. 2019. Reports of the 2018 AAAI Fall Symposium. AI Magazine. 40: 66-72.
  3. Amant, R. 2013. Computing for Ordinary Mortals. Oxford, UK: Oxford University Press.
  4. Anderson, J. R. 1976. Language, Memory and Thought. Hillsdale, NJ: Erlbaum Associates.
  5. Anderson, J. R. 1983. The Architecture of Cognition. Cambridge, MA: Harvard University Press.
  6. Anderson, J. R.; Bothell, D.; Byrne, M. D.; Douglass, S.; Lebiere, C.; and Qin, Y. 2004. An Integrated Theory of the Mind. Psychological Review. 111: 1036-1060.
  7. Anderson, J. R.; and Bower, G. H. 1973. Human Associative Memory. Hillsdale, NJ: Lawrence Erlbaum Associates.
  8. Arens, Y.; and Rosenbloom, P. eds. 2002. Responding to the Unexpected: Report of the Workshop Held in New York City, February 27-March 1, 2002.
  9. Bell, C. G.; and Newell, A. 1971. Computer Structures: Readings and Examples. New York, NY: McGraw-Hill.
  10. Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan, T.; Child, R.; Ramesh, A.; Ziegler, D. M.; Wu, J.; Winter, C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.; Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford, A.; Sutskever, I; and Amodei, D. 2020. Language Models are Few-Shot Learners. In Proceedings of the Thirty-Fourth Conference on Neural Information Processing Systems, 1877–1901.
  11. Card, S.; Moran, T.; and Newell, A. 1983. The Psychology of Human Computer Interaction. Hillsdale, NJ: Lawrence Erlbaum Associates.
  12. Chen, J.; Demski, A.; Han, T.; Morency, L-P.; Pynadath, D.; Rafidi, N.; and Rosenbloom, P. S. 2011. Fusing Symbolic and Decision-Theoretic Problem Solving + Perception in a Graphical Cognitive Architecture. In Proceedings of the Second International Conference on Biologically Inspired Cognitive Architectures, 64-72.
  13. Cho, B.; Rosenbloom, P. S.; and Dolan, C. P. 1991. Neuro-Soar: A Neural-Network Architecture for Goal-Oriented Behavior. In Proceedings of the Thirteenth Annual Conference of the Cognitive Science Society, 673-677.
  14. Chomsky, N. 1965. Aspects of the Theory of Syntax. Cambridge, MA: MIT Press.
  15. Cooper, R.; Fox, J.; Farringdom, J.; and Shallice, T. 1996. Towards a Systematic Methodology for Cognitive Modelling. Artificial Intelligence. 85: 3-44.
  16. Dasgupta, S. 2016. Computer Science: A Very Short Introduction. Oxford, UK: Oxford University Press.
  17. Demski, A. 2022. Cognitive Equations: Fixed-Point Finding as an Intermediate Layer in Cognitive Architecture. PhD Dissertation, University of Southern California.
  18. Denning, P. J. 2005. Is Computer Science Science? Communications of the ACM. 48: 27-31.
  19. Denning, P. J. 2007. Computing is a Natural Science. Communications of the ACM. 50: 13-18.
  20. Denning, P. J. 2013. The Science in Computer Science. Communications of the ACM. 56: 35-38.
  21. Denning, P. J.; and Rosenbloom, P. S. 2009. Computing: The Fourth Great Domain of Science. Communications of the ACM. 52: 27-29.
  22. Eisner, J.; and Filardo, N. W. 2011. Dyna: Extending Datalog for Modern AI. In Datalog Reloaded ed. O. de Moor; G. Gottlob; T. Furche; and A. Sellers. Berlin, Germany: Springer-Verlag.
  23. Eliasmith, C. 2013. How to Build a Brain: An Architecture for Neurobiological Cognition. New York, NY: Oxford University Press.
  24. Feigenbaum, E. 1992. Expert Systems: Principles and Practice. Stanford KSL Tech. Report 91-79.
  25. Fitts, P. M.; and Seeger, C. 1953. S-R Compatibility: Spatial Characteristics of Stimulus and Response Codes. Journal of Experimental Psychology. 46: 199–210.
  26. Flenner, A.; Fraune, M. R.; Hiatt, L. M.; Kendall, T.; Laird, J. E.; Lebiere, C.; Rosenbloom, P. S.; Stein, F.; Topp, E. A.; Unhelkar, V. V.; and Zhao, Y. 2018. Reports of the AAAI 2017 Fall Symposium Series. AI Magazine. 39: 81-86.
  27. Forgy, C. L. 1982. Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem. Artificial Intelligence. 19: 17-37.
  28. François J. 1977. Evolution and Tinkering. Science. 196: 1161–1166.
  29. Frey, P. W. 1981. The Santa Cruz Open Othello Tournament for Computers. BYTE. 6: 26-37.
  30. Getoor, L.; and Taskar, B. 2007. Introduction to Statistical Relational Learning. Cambridge, MA: MIT Press.
  31. Gilbey, J. 2012. Virtually There. Nature. 491: 331.
  32. Gluck, K. A.; and Laird, J. E. eds. 2019. Interactive Task Learning: Humans, Robots, and Agents Acquiring New Tasks through Natural Interactions. Cambridge, MA: MIT Press.
  33. Hennessy, J. L.; and Patterson, D. A. 2012. Computer Architecture: A Quantitative Approach (5th Edition). Waltham, MA: Morgan Kaufmann.
  34. Hill, R. W.; Chen, J.; Gratch, J.; Rosenbloom, P. S.; and Tambe, M. 1997. Intelligent Agents for the Synthetic Battlefield: A Company of Rotary Wing Aircraft. In Proceedings, Ninth Conference on Innovative Applications of Artificial Intelligence, 1006-1012.
  35. Hossenfelder, S. 2018. Lost in Math: How Beauty Leads Physics Astray. New York, NY: Basic Books.
  36. Jilk, D. J.; Lebiere, C.; O’Reilly, R. C.; and Anderson, J. R. 2008. SAL: An Explicitly Pluralistic Cognitive Architecture. Journal of Experimental & Theoretical Artificial Intelligence. 20: 197-218.
  37. John, B. E.; and Newell, A. 1990. Toward an Engineering Model of Stimulus-Response Compatibility. In Stimulus-Response Compatibility: An Integrated Perspective eds. R. W. Proctor; and T. G. Reeve. Amsterdam: North-Holland.
  38. John, B. E.; Rosenbloom, P. S.; and Newell, A. 1985. A Theory of Stimulus-Response Compatibility Applied to Human-Computer Interaction. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 212-219.
  39. Jones, R. M.; Laird, J. E.; Nielsen, P. E.; Coulter, K. J.; Kenny, P.; and Koss, F. V. 1999. Automated intelligent pilots for combat flight simulation. AI Magazine. 20: 27-41.
  40. Joshi, H.; Rosenbloom, P. S.; and Ustun, V. 2014. Isolated Word Recognition in the Sigma Cognitive Architecture. Biologically Inspired Cognitive Architecture. 10: 1-9.
  41. Joshi, H.; Rosenbloom, P. S.; and Ustun, V. 2016. Continuous Phone Recognition in the Sigma Cognitive Architecture. Biologically Inspired Cognitive Architectures. 18: 23-32.
  42. Kivunja, C. 2018. Distinguishing between Theory, Theoretical Framework, and Conceptual Framework: A Systematic Review of Lessons from the Field. International Journal of Higher Education. 7: 44-53.
  43. Koller, D.; and Friedman, N. 2009. Probabilistic Graphical Models: Principles and Techniques. Cambridge, MA: MIT Press.
  44. Kotseruba, I.; and Tsotsos, J. K. 2020. 40 years of Cognitive Architectures: Core Cognitive Abilities and Practical Applications. Artificial Intelligence Review. 53: 17-94.
  45. Koza, J. R. 1992. Genetic Programming: On the Programming of Computers by Means of Natural Selection. Cambridge, MA: MIT Press.
  46. Kschischang, F. R.; Frey, B. J.; and Loeliger, H. 2001. Factor Graphs and the Sum-Product Algorithm. IEEE Transactions on Information Theory. 47: 498-519.
  47. Kuhn, T. 1962. The Structure of Scientific Revolutions. Chicago, IL: University of Chicago Press.
  48. Lacroix, G. L.; and Cousineau, D. 2007. The Introduction to the Special Issue on “RT(N) = a + b N-c: The Power Law of Learning 25 Years Later.” Tutorials in Quantitative Methods for Psychology. 2: 77-83.
  49. Laird, J. E. 1984. Universal Subgoaling. Ph.D. Thesis, Carnegie-Mellon University.
  50. Laird, J. E. 2012. The Soar Cognitive Architecture. Cambridge, MA: MIT Press.
  51. Laird, J. E. 2022. Introduction to Soar. arXiv:2205.03854.
  52. Laird, J. E.; Lebiere, C.; and Rosenbloom, P. S. 2017. A Standard Model of the Mind: Toward a Common Computational Framework across Artificial Intelligence, Cognitive Science, Neuroscience, and Robotics. AI Magazine. 38: 13-26.
  53. Laird, J.E.; and Newell, A. 1983. A Universal Weak Method: Summary of Results. In Proceedings of the International Joint Conference on Artificial Intelligence, 771-773.
  54. Laird, J. E.; Newell, A.; and Rosenbloom, P. S. 1987. Soar: An Architecture for General Intelligence. Artificial Intelligence. 33: 1-64.
  55. Laird, J. E.; and Rosenbloom, P. S. 1990. Integrating Execution, Planning, and Learning in Soar for External Environments. In Proceedings of the Eighth National Conference on Artificial Intelligence, 1022-1029.
  56. Laird, J. E.; and Rosenbloom, P. S. 1992. In Pursuit of Mind: The Research of Allen Newell. AI Magazine. 13: 17-45.
  57. Laird, J. E.; and Rosenbloom, P. S. 1996. The Evolution of the Soar Cognitive Architecture. In Mind Matters: A Tribute to Allen Newell eds. D. M. Steier; and T. M. Mitchell. Mahwah, NJ: Lawrence Erlbaum Associates.
  58. Laird, J. E.; Rosenbloom, P. S.; and Newell, A. 1984. Towards Chunking as a General Learning Mechanism. In Proceedings of the National Conference on Artificial Intelligence, 188-192.
  59. Laird, J. E.; Rosenbloom, P. S.; and Newell, A. 1986a. Chunking in Soar: The Anatomy of a General Learning Mechanism. Machine Learning. 1: 11-46.
  60. Laird, J. E.; Rosenbloom, P. S.; and Newell, A. 1986b. Universal Subgoaling and Chunking: The Automatic Generation and Learning of Goal Hierarchies. Hingham, MA: Kluwer Academic Publishers.
  61. Lakatos, I. 1978. The Methodology of Scientific Research Programmes: Philosophical Papers Volume 1. Cambridge, UK: Cambridge University Press.
  62. Langley, P.; Laird, J. E.; and Rogers, S. 2009. Cognitive Architectures: Research Issues and Challenges. Cognitive Systems Research. 10: 141-160.
  63. Langley, P.; Thompson, K.; Iba, W.; Gennari, J.; and Allen, A. J. 1989. An Integrated Cognitive Architecture for Autonomous Agents. Technical Report 89-28 Department of Information & Computer Science, University of California, Irvine, CA.
  64. Larue, O.; West, R.; Rosenbloom, P. S.; Dancy, C. L.; Samsonovich, A. V.; Petters, D.; and Juvina, I. 2018. Emotion in the Common Model of Cognition. Procedia Computer Science. 145: 730-739.
  65. LeCun, Y. 2022. A Path Towards Autonomous Machine Intelligence, Version 0.9.2, 2022-06-27.
  66. LeCun, Y.; Bengio, Y.; and Hinton, G. E. 2015. Deep Learning. Nature. 521: 436-444.
  67. Lehman, J. F.; Laird, J. E.; and Rosenbloom, P. S. 1998. A Gentle Introduction to Soar, an Architecture for Human Cognition. In An Invitation to Cognitive Science (Second Edition), Volume 4: Methods, Models and Conceptual Issues eds. D. N. Osherson; S. Sternberg; and D. Scarborough. Cambridge, MA: MIT Press.
  68. Lehman, J. F.; Lewis, R. L.; and Newell, A. 1991. Integrating Knowledge Sources in Language Cpmprehension. In Proceedings of the Thirteenth Annual Conferences of the Cognitive Science Society 461-466.
  69. Lenat, D. B. 1983. Eurisko: A Program that Learns new Heuristics and Domain Concepts. Artificial Intelligence. 21: 61-98.
  70. Lenat, D. B.; and Guha, R. V. 1989. Building Large Knowledge-Based Systems; Representation and Inference in the Cyc Project. Boston, MA: Addison-Wesley Longman.
  71. Linnaeus, C. 1735. Systema Naturæ.
  72. Marino, M. C. 2020. Critical Code Studies. Cambridge, MA: MIT Press.
  73. McCulloch, W. S.; and Pitts, W. 1943. A Logical Calculus of the Ideas Immanent in Nervous Activity. Bulletin of Mathematical Biophysics. 5: 115-133.
  74. Miller, G. A. 1956. The Magical Number Seven, Plus or Minus Two: Some Limits on our Capacity for Processing Information. Psychological Review. 63: 81-97.
  75. Milnes, B. G.; Pelton, G.; Doorenbos, R.; Hucka, M.; Laird, J.; Rosenbloom, P.; and Newell, A 1992. A Specification of the Soar Cognitive Architecture in Z. Carnegie Mellon University, USA, Technical Report.
  76. Minsky, M.; and Papert, S. 1969. Perceptrons. Cambridge, MA: MIT Press.
  77. Newell, A. 1973. You Can’t Play 20 Questions with Nature and Win: Projective Comments on the Papers of this Symposium. In Visual Information Processing: Proceedings of the Eighth Annual Carnegie Symposium on Cognition ed. W. G. Chase. MA: Academic Press.
  78. Newell, A. 1990. Unified Theories of Cognition. Cambridge, MA: Harvard University Press.
  79. Newell, A.; and Rosenbloom, P. S. 1981. Mechanisms of Skill Acquisition and the Law of Practice. In Cognitive Skills and their Acquisition ed. J. R. Anderson. Hillsdale, NJ: Erlbaum.
  80. Newell, A.; Shaw, J.C.; and Simon, H.A. 1959. Report on a General Problem-Solving Program. In Proceedings of the International Conference on Information Processing, 256-264.
  81. Newell, A.; and Simon, H. A. 1956. The Logic Theory Machine: A Complex Information Processing System. IRE Transactions on Information Theory. 2: 61-79.
  82. Newell, A.; and Simon, H. A. 1972. Human Problem Solving. Englewood Cliffs, NJ: Prentice-Hall.
  83. Nyhan, J.; Terras, M. M.; and Vanhoutte. E. eds. 2013, Defining Digital Humanities: A Reader. Farnham, UK: Ashgate.
  84. Oishi, S.; and Westgate, E. C. 2022. A Psychologically Rich Life: Beyond Happiness and Meaning. Psychological Review. 129: 790–811.
  85. Park, J. S.; O’Brien, J. C.; Cai, C. J.; Morris, M. R.; Liang, P; and Bernstein, M. S. (2023). Generative Agents: Interactive Simulacra of Human Behavior. arXiv:2304.03442.
  86. Pausch, R. 2008. The Last Lecture. New York, NY: Hachette USA.
  87. Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Francisco, CA: Morgan Kaufman.
  88. Plato ~375 BC. Republic.
  89. Pólya 1945. How to Solve It. Garden City, NY: Doubleday.
  90. Post, E. 1943. Formal Reductions of the General Combinatorial Decision Problem. American Journal of Mathematics. 65: 197-215.
  91. Pynadath, D. V.; Rosenbloom, P. S.; and Marsella, S. C. 2014. Reinforcement Learning for Adaptive Theory of Mind in the Sigma Cognitive Architecture. In Proceedings of the Seventh Annual Conference on Artificial General Intelligence, 143-154.
  92. Pynadath, D. V.; Rosenbloom, P. S.; Marsella, S. C.; and Li, L. 2013. Modeling Two-Player Games in the Sigma Graphical Cognitive Architecture. In Proceedings of the Sixth Conference on Artificial General Intelligence, 98-108.
  93. Rosenblatt, F. 1958. The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychological Review. 65: 386-408.
  94. Rosenbloom, P. S. 1982. A World-Championship-Level Othello Program. Artificial Intelligence. 19: 279-320.
  95. Rosenbloom, P. S. 1983. The Chunking of Goal Hierarchies: A Model of Practice and Stimulus-Response Compatibility. Ph.D. Thesis, Carnegie-Mellon University.
  96. Rosenbloom, P. S. 2004. A New Framework for Computer Science and Engineering. IEEE Computer. 37: 23-28.
  97. Rosenbloom, P. S. 2006. A Cognitive Odyssey: From the Power Law of Practice to a General Learning Mechanism and Beyond. Tutorials in Quantitative Methods for Psychology. 2: 43-51.
  98. Rosenbloom, P. S. 2010. Computing and Computation. ACM Ubiquity Symposium: ‘What is Computation?.
  99. Rosenbloom, P. S. 2011a. Mental Imagery in a Graphical Cognitive Architecture. In Proceedings of the Second International Conference on Biologically Inspired Cognitive Architectures, 314-323.
  100. Rosenbloom, P. S. 2011b. Bridging Dichotomies in Cognitive Architectures for Virtual Humans. In Proceedings of the AAAI Fall Symposium on Advances in Cognitive Systems.
  101. Rosenbloom, P. S. 2012a. On Computing: The Fourth Great Scientific Domain. Cambridge, MA: MIT Press.
  102. Rosenbloom, P. S. 2012b. Deconstructing Reinforcement Learning in Sigma. In Proceedings of the Fifth Conference on Artificial General Intelligence, 62-271.
  103. Rosenbloom, P. S. 2012c. Extending Mental Imagery in Sigma. In Proceedings of the Fifth Conference on Artificial General Intelligence, 272-281.
  104. Rosenbloom, P. S. 2012d. Towards a Conceptual Framework for the Digital Humanities. Digital Humanities Quarterly. 6.
  105. Rosenbloom, P. S. 2014. Deconstructing Episodic Learning and Memory in Sigma. In Proceedings of the Thirty-Sixth Annual Conference of the Cognitive Science Society, 1317-1322.
  106. Rosenbloom, P. S. 2019. (A)Symmetry × (Non)Monotonicity: Towards a Deeper Understanding of Key Cognitive Di/Trichotomies and the Common Model of Cognition. In Proceedings of the Seventeenth Annual Meeting of the International Conference on Cognitive Modeling.
  107. Rosenbloom, P. S. 2022. Thoughts on Architecture. In Proceedings of the Fifteenth Conference on Artificial General Intelligence, 364-373.
  108. Rosenbloom, P. S. 2023. Rethinking the Physical Symbol Systems Hypothesis. In Proceedings of the Sixteenth International Conference on Artificial General Intelligence, 207-216.
  109. Rosenbloom, P. S. 2025. On Minds: Reflections of a Cognitive Architect. Cambridge, MA: MIT Press. In Preparation.
  110. Rosenbloom, P. S.; Demski, A.; Han, T.; and Ustun, V. 2013. Learning via Gradient Descent in Sigma. In Proceedings of the Twelfth International Conference on Cognitive Modeling, 35-40.
  111. Rosenbloom, P. S.; Demski, A.; and Ustun, V. 2016a. The Sigma Cognitive Architecture and System: Towards Functionally Elegant Grand Unification. Journal of Artificial General Intelligence. 7: 1-103.
  112. Rosenbloom, P. S.; Demski, A.; and Ustun, V. 2016b. Rethinking Sigma’s Graphical Architecture: An Extension to Neural Networks. In Proceedings of the Ninth Conference on Artificial General Intelligence, 84-94.
  113. Rosenbloom, P. S.; Demski, A.; and Ustun, V. 2017. Toward a Neural-Symbolic Sigma: Introducing Neural Network Learning. In Proceedings of the Fifteenth Annual Meeting of the International Conference on Cognitive Modeling.
  114. Rosenbloom, P. S.; Gratch, J.; and Ustun, V. 2015. Towards Emotion in Sigma: From Appraisal to Attention. In Proceedings of the Eighth Conference on Artificial General Intelligence, 142-151.
  115. Rosenbloom, P. S.; Joshi, H.; and Ustun, V. 2019. (Sub)Symbolic × (A)Symmetric × (Non)Combinatory: A Map of AI Approaches Spanning Symbolic/Statistical to Neural/ML. Advances in Cognitive Systems. 8: 113-131.
  116. Rosenbloom, P. S.; Laird, J. E.; Lebiere, C.; Stocco, A.; Granger, R. H.; and Huyck, C. 2024. A Proposal for Extending the Common Model of Cognition to Emotion. In Proceedings of the Twenty-Second International Conference on Cognitive Modeling.
  117. Rosenbloom, P. S.; Laird, J. E.; McDermott, J.; Newell; A.; and Orciuch; E. 1985. R1-Soar: An Experiment in Knowledge-Intensive Programming in a Problem-Solving Architecture. IEEE Transactions on Pattern Analysis and Machine Intelligence. 7: 561-569.
  118. Rosenbloom, P. S.; Laird, J. E.; and Newell, A. 1987. Knowledge Level Learning in Soar, In Proceedings of the Sixth National Conference on Artificial Intelligence, 499-504.
  119. Rosenbloom, P. S.; Laird, J. E.; and Newell, A. eds. 1993. The Soar Papers: Research on Integrated Intelligence. Cambridge, MA: MIT Press.
  120. Rosenbloom, P. S.; Lebiere, C.; and Laird, J. E. 2022. Cross-Pollination among Neuroscience, Psychology and AI Research Yields a Foundational Understanding of Thinking. The Conversation.
  121. Rosenbloom, P. S.; Lee, S.; and Unruh, A. 1990. Responding to Impasses in Memory-Driven Behavior: A Framework for Planning, In Proceedings of the Workshop on Innovative Approaches to Planning, Scheduling, and Control, 181-191.
  122. Rosenbloom, P. S.; Lee, S.; and Unruh, A. 1993. Bias in Planning and Explanation-Based Learning. In S. Minton (Ed.), Machine Learning Methods for Planning. San Mateo, CA: Morgan Kaufmann.
  123. Rosenbloom, P. S.; and Newell, A. 1986. The Chunking of Goal Hierarchies: A Generalized Model of Practice. In Machine Learning: An Artificial Intelligence Approach, Volume II eds. R. S. Michalski; J. G. Carbonell; and T. M. Mitchell. Los Altos, CA: Morgan Kaufmann.
  124. Rosenbloom, P. S.; and Newell, A. 1988. An Integrated Computational Model of Stimulus-Response Compatibility and Practice. In The Psychology of Learning and Motivation, Volume 21 ed. G. H. Bower. San Diego, CA: Academic Press.
  125. Rosenbloom, P. S.; and Ustun, V. 2019. An Architectural Integration of Temporal Motivation Theory for Decision Making. In Proceedings of the Seventeenth Annual Meeting of the International Conference on Cognitive Modeling.
  126. Rumelhart, D. E.; Hinton, G. E.; and Williams, R. J. 1986. Learning Representations by Back-Propagating Errors. Nature. 323: 533-536.
  127. Russell, B. 1918. The Philosophy of Logical Atomism.
  128. Russell, S. J.; and Norvig, P. 2010. Artificial Intelligence: A Modern Approach (Third Edition). Upper Saddle River, NJ: Pearson.
  129. Rychener, M. D. 1983. The Instructable Production System: A Retrospective Analysis. In Machine Learning: An Artificial Intelligence Approach eds. R. S. Michalski; J. G. Carbonell; and T. M. Mitchell. Palo Alto, CA: Morgan Kaufmann.
  130. Rychener, M. D.; and Newell, A. 1978. An Instructable Production System: Basic Design Issues. In Pattern-Directed Inference Systems eds. D. A. Waterman; and F. Hayes-Roth. Orlando, FL: Academic Press.
  131. Scerri, P.; Pynadath, D. V.; Johnson, L.; Rosenbloom, P.; Schurr, N.; and Tambe, M. 2003. A Prototype Infrastructure for Distributed Robot-Agent-Person Teams. In Proceedings of the Second International Joint Conference on Autonomous Agents & Multiagent Systems, 433-440.
  132. Silver, D.; Hubert, J.; Anonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; Lillicrap, T.; Simonyan, K.; and Hassabis, D. 2018. A General Reinforcement Learning Algorithm that Masters Chess, Shogi, and Go through Self-Play. Science. 363: 1140-1144.
  133. Simon, H. A. 1969. The Sciences of the Artificial. Cambridge, MA: MIT Press.
  134. Simon, H. A. 1974. How Big Is a Chunk? Science. 183: 482-488.
  135. Steier, D. M.; Laird, J. E.; Newell, A.; Rosenbloom, P. S.; Flynn, R.; Golding, A.; Polk, T. A.; Shivers, O. G.; Unruh, A.; and Yost, G. R. 1987. Varieties of Learning in Soar: 1987. In Proceedings of the Fourth International Workshop on Machine Learning, 300-311.
  136. Stocco, A.; Steine-Hanson, Z.; Koh, N.; Laird, J. E.; Lebiere, C.; and Rosenbloom, P. S. 2021. Analysis of the Human Connectome Data Supports the Notion of a “Common Model of Cognition” for Human and Humanlike Intelligence. Neuroimage. 235: 118035.
  137. Sun, R. 2016. Anatomy of the Mind: Exploring Psychological Mechanisms and Processes with the Clarion Cognitive Architecture. New York, NY: Oxford University Press.
  138. Swartout, W. R., Gratch, J., Hill, R. W., Hovy, E. H., Marsella, S., Rickel, J.; and Traum, D. R. 2006. Toward Virtual Humans. AI Magazine. 27: 96-108.
  139. Tallant, J.; and Andow, J. 2020. English Language and Philosophy. In The Routledge Handbook of English Language and Digital Humanities eds. S. Adolphs; and D. Knight. London, UK: Routledge.
  140. Tambe, M.; Johnson, W. L.; Jones, R. M.; Koss, F.; Laird, J. E.; Rosenbloom, P. S.; and Schwamb, K. B. 1995. Intelligent Agents for Interactive Simulation Environments. AI Magazine. 16: 15-39.
  141. Tambe, M.; Schwamb, K. B.; and Rosenbloom, P. S. 1995. Building Intelligent Pilots for Simulated Rotary Wing Aircraft. In Proceedings of the Fifth Conference on Computer Generated Forces and Behavioral Representation, 39-44.
  142. Tedre, M. 2015. The Science of Computing: Shaping a Discipline. Boca Raton, FL: CRC Press.
  143. The Committee on European Computing Education 2017. Informatics Education in Europe: Are We All In The Same Boat? New York, NY: Association for Computing Machinery.
  144. Turing, A. M. 1937. On Computable Numbers, with an Application to the Entscheidungsproblem. Proceedings of the London Mathematical Society. 42: 230-65.
  145. Ustun, V.; Kumar, R.; Reilly, A.; Sajjadi, S.; and Miller, A. 2021. Adaptive Synthetic Characters for Military Training. In Proceedings of the Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2021.
  146. Ustun, V.; and Rosenbloom, P. S. 2015. Towards Adaptive, Interactive Virtual Humans in Sigma. Proceedings of the Fifteenth International Conference on Intelligent Virtual Agents, 98-108.
  147. Ustun, V.; Rosenbloom, P. S.; Kim, J.; and Li, L. 2015. Building High Fidelity Human Behavior Models in the Sigma Cognitive Architecture. In Proceedings of the 2015 Winter Simulation Conference, 3124-3125.
  148. Ustun, V.; Rosenbloom, P. S.; Sagae, K.; and Demski, A. 2014. Distributed Vector Representations of Words in the Sigma Cognitive Architecture. In Proceedings of the Seventh Annual Conference on Artificial General Intelligence, 196-207.
  149. Ustun, V.; Rosenbloom, P. S.; Sajjadi, S.; and Nuttall, J. 2018. Controlling Synthetic Characters in Simulations: A Case for Cognitive Architectures and Sigma. In Proceedings of the Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2018.
  150. Waldrop, M. M. 1988a. Toward a Unified Theory of Cognition. Science. 241: 27-29.
  151. Waldrop, M. M. 1988b. Soar: A Unified Theory of Cognition? Science. 241: 296-298.
  152. Wilczek, F. 2015. Why is Physics Beautiful? World Economic Forum.
  153. Zhou, J.; Cui, G.; Zhang, Z.; Yang, C.; Liu, Z.; and Sun, M. 2019. Graph Neural Networks: A Review of Methods and Applications. arXiv:1812.08434.
  154. Zhou, J.; and Ustun, V. 2021. PySigma: Towards Enhanced Grand Unification for the Sigma Cognitive Architecture. In Proceedings of the Fourteenth Conference on Artificial General Intelligence, 355–366.
Language: English
Page range: 3 - 61
Submitted on: Aug 27, 2022
Accepted on: Jan 22, 2024
Published on: Nov 26, 2025
Published by: Artificial General Intelligence Society
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Paul S. Rosenbloom, published by Artificial General Intelligence Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.