Have a personal or library account? Click to login
Extending Environments to Measure Self-reflection in Reinforcement Learning Cover

Extending Environments to Measure Self-reflection in Reinforcement Learning

Open Access
|Nov 2022

References

  1. Alexander, S. A., and Hutter, M. 2021. Reward-Punishment Symmetric Universal Intelligence. In CAGI.10.1007/978-3-030-93758-4_1
  2. Alexander, S. A., and Pedersen, A. P. 2022. Pseudo-visibility: A Game Mechanic Involving Willful Ignorance. In FLAIRS.10.32473/flairs.v35i.130652
  3. Alexander, S. A.; Castaneda, M.; Compher, K.; and Martinez, O. 2022. Extended Environments. https://github.com/semitrivial/ExtendedEnvironments.
  4. Alexander, S. A. 2022. Extended subdomains: a solution to a problem of Hernández-Orallo and Dowe. Preprint (accepted to CAGI-22).10.1007/978-3-031-19907-3_14
  5. Bell, J. H.; Linsefors, L.; Oesterheld, C.; and Skalse, J. 2021. Reinforcement Learning in Newcomblike Environments. In NeurIPS.
  6. Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M. 2013. The arcade learning environment: An evaluation platform for general agents. Journal of Artificial Intelligence Research 47:253–279.10.1613/jair.3912
  7. Beyret, B.; Hernández-Orallo, J.; Cheke, L.; Halina, M.; Shanahan, M.; and Crosby, M. 2019. The animal-AI environment: Training and testing animal-like artificial cognition. Preprint.
  8. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; and Zaremba, W. 2016. OpenAI gym. Preprint.
  9. Chaslot, G.; Bakkes, S.; Szita, I.; and Spronck, P. 2008. Monte-Carlo Tree Search: A New Framework for Game AI. AIIDE 8:216–217.10.1609/aiide.v4i1.18700
  10. Chollet, F. 2019. On the measure of intelligence. Preprint.
  11. Cobbe, K.; Hesse, C.; Hilton, J.; and Schulman, J. 2020. Leveraging procedural generation to benchmark reinforcement learning. In International conference on machine learning, 2048–2056. PMLR.
  12. Gavane, V. 2013. A measure of real-time intelligence. Journal of Artificial General Intelligence 4(1):31–48.10.2478/jagi-2013-0003
  13. Hendrycks, D., and Dietterich, T. 2019. Benchmarking neural network robustness to common corruptions and perturbations. In International Conference on Learning Representations.
  14. Hernández-Orallo, J., and Dowe, D. L. 2010. Measuring universal intelligence: Towards an anytime intelligence test. Artificial Intelligence 174(18):1508–1539.10.1016/j.artint.2010.09.006
  15. Hibbard, B. 2008. Adversarial sequence prediction. In CAGI.
  16. Hubinger, E.; van Merwijk, C.; Mikulik, V.; Skalse, J.; and Garrabrant, S. 2019. Risks from learned optimization in advanced machine learning systems. Preprint.
  17. Hutter, M. 2004. Universal artificial intelligence: Sequential decisions based on algorithmic probability. Springer.
  18. Legg, S., and Hutter, M. 2007. Universal intelligence: A definition of machine intelligence. Minds and machines 17(4):391–444.10.1007/s11023-007-9079-x
  19. Legg, S., and Veness, J. 2013. An approximation of the universal intelligence measure. In Algorithmic Probability and Friends: Bayesian Prediction and Artificial Intelligence. Springer. 236–249.10.1007/978-3-642-44958-1_18
  20. Leike, J., and Hutter, M. 2015. Bad universal priors and notions of optimality. In Conference on Learning Theory, 1244–1259. PMLR.
  21. Li, M., and Vitányi, P. 2008. An introduction to Kolmogorov complexity and its applications. Springer.10.1007/978-0-387-49820-1
  22. Nichol, A.; Pfau, V.; Hesse, C.; Klimov, O.; and Schulman, J. 2018. Gotta Learn Fast: A New Benchmark for Generalization in RL. Preprint.
  23. Nozick, R. 1969. Newcomb’s problem and two principles of choice. In Rescher, N., ed., Essays in honor of Carl G. Hempel. Springer. 114–146.10.1007/978-94-017-1466-2_7
  24. Raffn, A.; Hill, A.; Ernestus, M.; Gleave, A.; Kanervisto, A.; and Dormann, N. 2019. Stable Baselines3. https://github.com/DLR-RM/stable-baselines3.
  25. Sherstan, C.; White, A.; Machado, M. C.; and Pilarski, P. M. 2016. Introspective agents: Confidence measures for general value functions. In Conference on Artificial General Intelligence, 258–261. Springer.10.1007/978-3-319-41649-6_26
  26. Yampolskiy, R. V. 2017. Detecting qualia in natural and artificial agents. Preprint.
Language: English
Page range: 1 - 24
Submitted on: Jul 21, 2022
Accepted on: Oct 28, 2022
Published on: Nov 3, 2022
Published by: Artificial General Intelligence Society
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Samuel Allen Alexander, Michael Castaneda, Kevin Compher, Oscar Martinez, published by Artificial General Intelligence Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Volume 13 (2022): Issue 1 (October 2022)