Have a personal or library account? Click to login

Measuring Intelligence and Growth Rate: Variations on Hibbard’s Intelligence Measure

Open Access
|Jan 2021

References

  1. Alexander, S. A. 2019a. Intelligence via ultrafilters: structural properties of some intelligence comparators of deterministic Legg-Hutter agents. Journal of Artificial General Intelligence 10(1):24–45.10.2478/jagi-2019-0003
  2. Alexander, S. A. 2019b. Measuring the intelligence of an idealized mechanical knowing agent. In CIFMA.10.1007/978-3-030-57506-9_13
  3. Alexander, S. A. 2020a. AGI and the Knight-Darwin Law: why idealized AGI reproduction requires collaboration. In ICAGI.10.1007/978-3-030-52152-3_1
  4. Alexander, S. A. 2020b. The Archimedean trap: Why traditional reinforcement learning will probably not yield AGI. Journal of Artificial General Intelligence 11(1):70–85.10.2478/jagi-2020-0004
  5. Bostrom, N. 2003. Ethical issues in advanced artificial intelligence. In Schneider, S., ed., Science fiction and philosophy: from time travel to superintelligence. John Wiley and Sons. 277–284.
  6. Chaitin, G. 2011. Metaphysics, Metamathematics and Metabiology. In Hector, Z., ed., Randomness through computation. World Scientific.10.1142/9789814327756_0006
  7. Conway, J. H. 2000. On Numbers and Games. CRC Press, 2nd edition.10.1201/9781439864159
  8. Ehrlich, P. 2012. The absolute arithmetic continuum and the unification of all numbers great and small. Bulletin of Symbolic Logic 18:1–45.10.2178/bsl/1327328438
  9. Girard, J.-Y. 1981. 21 \prod\nolimits_2^1 {} -logic, Part 1: Dilators. Annals of Mathematical Logic 21(2-3):75–219.
  10. Goldblatt, R. 2012. Lectures on the hyperreals: an introduction to nonstandard analysis. Springer.
  11. Good, I. J. 1969. Gödel’s theorem is a red herring. The British Journal for the Philosophy of Science 19(4):357–358.10.1093/bjps/19.4.357
  12. Hardy, G. H. 1904. A theorem concerning the infinite cardinal numbers. Quarterly Journal of Mathematics 35:87–94.
  13. Hibbard, B. 2008. Adversarial sequence prediction. In ICAGI, 399–403.
  14. Hibbard, B. 2011. Measuring agent intelligence via hierarchies of environments. In ICAGI, 303–308.
  15. Hrbacek, K., and Katz, M. G. 2020. Infinitesimal analysis without the axiom of choice. Preprint.10.1016/j.apal.2021.102959
  16. Hutter, M. 2004. Universal artificial intelligence: Sequential decisions based on algorithmic probability. Springer.
  17. Kirman, A. P., and Sondermann, D. 1972. Arrow’s theorem, many agents, and invisible dictators. Journal of Economic Theory 5(2):267–277.10.1016/0022-0531(72)90106-8
  18. Knuth, D. E. 1974. Surreal numbers: a mathematical novelette. Addison-Wesley.
  19. Knuth, D. E. 1976. Big Omicron and big Omega and big Theta. ACM Sigact News 8(2):18–24.10.1145/1008328.1008329
  20. Legg, S. 2006. Is there an elegant universal theory of prediction? In International Conference on Algorithmic Learning Theory, 274–287. Springer.10.1007/11894841_23
  21. Liu, S.-C. 1960. An enumeration of the primitive recursive functions without repetition. Tohoku Mathematical Journal 12(3):400–402.10.2748/tmj/1178244403
  22. Robinson, A. 1974. Non-standard analysis. Princeton University Press.
  23. Wainer, S., and Buchholz, W. 1987. Provably computable functions and the fast growing hierarchy. In Simpson, S. G., ed., Logic and Combinatorics. AMS.10.1090/conm/065/891248
  24. Wainer, S. 1989. Slow growing versus fast growing. The Journal of Symbolic Logic 54(2):608–614.10.2307/2274873
  25. Wang, P. 2019. On Defining Artificial Intelligence. Journal of Artificial General Intelligence 10(2):1–37.10.2478/jagi-2019-0002
  26. Weiermann, A. 1997. Sometimes slow growing is fast growing. Annals of Pure and Applied Logic 90(1-3):91–99.10.1016/S0168-0072(97)00033-X
  27. Weiermann, A. 2002. Slow versus fast growing. Synthese 133:13–29.10.1023/A:1020899506400
  28. Yampolskiy, R. V. 2012. AI-complete, AI-hard, or AI-easy–classification of problems in AI. In The 23rd Midwest Artificial Intelligence and Cognitive Science Conference.10.5402/2012/271878
  29. Yampolskiy, R. V. 2013. Turing test as a defining feature of AI-completeness. In Artificial intelligence, evolutionary computing and metaheuristics. Springer. 3–17.
  30. Yampolskiy, R. V. 2020. On Controllability of Artificial Intelligence. Technical report.
Language: English
Page range: 1 - 25
Submitted on: Oct 16, 2020
Accepted on: Jan 8, 2021
Published on: Jan 19, 2021
Published by: Artificial General Intelligence Society
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2021 Samuel Alexander, Bill Hibbard, published by Artificial General Intelligence Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.