Bach, J. 2009. Principles of Synthetic Intelligence PSI: An Architecture of Motivated Cognition. Oxford: Oxford University Press.10.1093/acprof:oso/9780195370676.001.0001
Bhatnagar, S.; Alexandrova, A.; Avin, S.; Cave, S.; Cheke, L.; Crosby, M.; Feyereisl, J.; Halina, M.; Loe, B. S.; hÉigeartaigh, S. O.; Martnez-Plumed, F.; Price, H.; Shevlin, H.; Weller, A.; Winfield, A.; and Hernández-Orallo, J. 2018. Mapping Intelligence: Requirements and Possibilities. In Müller, V. C., ed., Philosophy and Theory of Artificial Intelligence 2017. Berlin: Springer. 117–135.10.1007/978-3-319-96448-5_13
Birnbaum, L. 1991. Rigor mortis: a response to Nilsson’s “Logic and artificial intelligence”. Artificial Intelligence 47:57–77.10.1016/0004-3702(91)90050-T
Feigenbaum, E. A., and McCorduck, P. 1983. The Fifth Generation: Artificial Intelligence and Japan’s Computer Challenge to the world. Reading, Massachusetts: Addison-Wesley Publishing Company.
Flach, P. 2012. Machine Learning: The Art and Science of Algorithms That Make Sense of Data. New York, NY, USA: Cambridge University Press.10.1017/CBO9780511973000
Franklin, S. 2007. A foundational architecture for artificial general intelligence. In Goertzel, B., and Wang, P., eds., Advance of Artificial General Intelligence. Amsterdam: IOS Press. 36–54.
Goertzel, B. 2014. Artificial General Intelligence: Concept, State of the Art, and Future Prospects. Journal of Artificial General Intelligence 5(1):1–46.10.2478/jagi-2014-0001
Goldstein, S.; Princiotta, D.; and Naglieri, J. 2015. Handbook of intelligence: Evolutionary theory, historical perspective, and current concepts. New York: Springer.10.1007/978-1-4939-1562-0
Gottfredson, L. S. 1997. Mainstream science on intelligence: an editorial with 52 signatories, history, and bibliography. Intelligence 24:13–23.10.1016/S0160-2896(97)90011-8
Hayes, P., and Ford, K. 1995. Turing Test Considered Harmful. In Mellish, C. S., ed., Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 1, 972–977.
Hernández-Orallo, J. 2017. The Measure of All Minds: Evaluating Natural and Artificial Intelligence. Cambridge: Cambridge University Press.10.1017/9781316594179
Hofstadter, D. R., and FARG. 1995. Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought. New York: Basic Books.
Hofstadter, D. R. 1985. Waking up from the Boolean dream, or, subcognition as computation. In Metamagical Themas: Questing for the Essence of Mind and Pattern. New York: Basic Books. chapter 26.
Holland, J. H. 1992. Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications to Biology, Control, and Artificial Intelligence. Cambridge, Massachusetts: MIT Press.10.7551/mitpress/1090.001.0001
Hopcroft, J. E.; Motwani, R.; and Ullman, J. D. 2007. Introduction to Automata Theory, Languages, and Computation. Boston: Addison-Wesley, 3rd edition.
Hsu, F.-h.; Campbell, M. S.; and Hoane, Jr., A. J. 1995. Deep Blue System Overview. In Proceedings of the 9th International Conference on Supercomputing, 240–244. New York, NY, USA: ACM.10.1145/224538.224567
Koene, R., and Deca, D. 2013. Editorial: Whole Brain Emulation seeks to Implement a Mind and its General Intelligence through System Identification. Journal of Artificial General Intelligence 4:1–9.10.2478/jagi-2013-0012
Laird, J. E.; Wray, R. E.; Marinier, R. P.; and Langley, P. 2009. Claims and challenges in evaluating human-level intelligent systems. In Goertzel, B.; Hitzler, P.; and Hutter, M., eds., Proceedings of the Second Conference on Artificial General Intelligence, 91–96.10.2991/agi.2009.17
Lake, B. M.; Ullman, T. D.; Tenenbaum, J. B.; and Gershman, S. J. 2017. Building machines that learn and think like people. Behavioral and Brain Sciences 40:E253.10.1017/S0140525X1600183727881212
Marr, D. 1982. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. San Francisco: W. H. Freeman & Co.
McCarthy, J.; Minsky, M.; Rochester, N.; and Shannon, C. 1955. A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence. URL: http://www-formal.stanford.edu/jmc/history/dartmouth.html, accessed in May 20, 2019.
McCorduck, P. 2004. Machines Who Think: A Personal Inquiry into the History and Prospects of Artificial Intelligence. Natick, MA: A. K. Peters, Ltd., 2nd edition.
McCulloch, W. S., and Pitts, W. H. 1943. A logical calculus of ideas immanent in neural activity. Bulletin of Mathematical Biophysics 5:115–133.10.1007/BF02478259
Minsky, M.; Singh, P.; and Sloman, A. 2004. The St. Thomas common sense symposium: designing architectures for human-level intelligence. AI Magazine 25(2):113–124.
Minsky, M. 1985b. Why intelligent aliens will be intelligible. In Regis, E., ed., Extraterrestrials: Science and Alien Intelligence. Cambridge: Cambridge University Press. 117–128.
Minsky, M. 1990. Logical vs. analogical or symbolic vs. connectionist or neat vs. scruffy. In Winston, P. H., and Shellard, S. A., eds., Artificial Intelligence at MIT, Vol. 1: Expanding Frontiers. Cambridge, Massachusetts: MIT Press. 218–243.
Monett, D., and Lewis, C. W. P. 2018. Getting clarity by defining Artificial Intelligence - A Survey. In Müller, V. C., ed., Philosophy and Theory of Artificial Intelligence 2017. Berlin: Springer. 212–214.10.1007/978-3-319-96448-5_21
Newell, A., and Simon, H. A. 1963. GPS, a program that simulates human thought. In Feigenbaum, E. A., and Feldman, J., eds., Computers and Thought. McGraw-Hill, New York. 279–293.
Newell, A., and Simon, H. A. 1976. Computer science as empirical inquiry: symbols and search. Communications of the ACM 19(3):113–126.10.1145/360018.360022
Nilsson, N. J. 2009. The Quest for Artificial Intelligence: A History of Ideas and Achievements. Cambridge: Cambridge University Press.10.1017/CBO9780511819346
Poole, D. L., and Mackworth, A. K. 2017. Artificial Intelligence: Foundations of Computational Agents. Cambridge: Cambridge University Press, 2 edition.10.1017/9781108164085
Rumelhart, D. E., and McClelland, J. L. 1986. PDP models and general issues in cognitive science. In Rumelhart, D. E., and McClelland, J. L., eds., Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1, Foundations. Cambridge, Massachusetts: MIT Press. 110–146.10.7551/mitpress/5236.001.0001
Russell, S., and Wefald, E. H. 1991. Do the Right Thing: Studies in Limited Rationality. Cambridge, Massachusetts: MIT Press.10.7551/mitpress/2474.001.0001
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe, D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.; Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D. 2016. Mastering the game of Go with deep neural networks and tree search. Nature 529:484–489.10.1038/nature1696126819042
Solomonoff, R. J. 1964. A formal theory of inductive inference. Part I and II. Information and Control 7(1-2):1–22,224–254.10.1016/S0019-9958(64)90131-7
Thórisson, K. R.; Bieger, J.; Li, X.; and Wang, P. 2019. Cumulative Learning. In Proceedings of the Twelfth Conference on Artificial General Intelligence. To appear.10.1007/978-3-030-27005-6_20
Thórisson, K. R. 2012. A New Constructivist AI: From Manual Methods to Self-Constructive Systems. In Wang, P., and Goertzel, B., eds., Theoretical Foundations of Artificial General Intelligence. Paris: Atlantis Press. 145–171.10.2991/978-94-91216-62-6_9
Thórisson, K. R. 2013. Reductio ad Absurdum: On Oversimplification in Computer Science and its Pernicious Effect on Artificial Intelligence Research. AGI-13 workshop on Formalizing Mechanisms for Artificial General Intelligence and Cognition, Beijing, China, July 31st. Retrieved from http://alumni.media.mit.edu/~kris/ftp/Thorisson-ReductioAdAbsurdum-AGI2013.pdf in May 20, 2019.
Wang, P., and Goertzel, B. 2007. Introduction: Aspects of artificial general intelligence. In Goertzel, B., and Wang, P., eds., Advance of Artificial General Intelligence. Amsterdam: IOS Press. 1–16.10.1007/978-3-540-68677-4
Wang, P., and Hammer, P. 2015. Issues in Temporal and Causal Inference. In Bieger, J.; Goertzel, B.; and Potapov, A., eds., Proceedings of the Eighth Conference on Artificial General Intelligence, 208–217.10.1007/978-3-319-21365-1_22
Wang, P., and Li, X. 2016. Different Conceptions of Learning: Function Approximation vs. Self-Organization. In Steunebrink, B.; Wang, P.; and Goertzel, B., eds., Proceedings of the Ninth Conference on Artificial General Intelligence, 140–149.10.1007/978-3-319-41649-6_14
Wang, P. 1994. On the Working Definition of Intelligence. Technical Report 94, Center for Research on Concepts and Cognition, Indiana University, Bloomington, Indiana.
Wang, P. 1996. Heuristics and normative models of judgment under uncertainty. International Journal of Approximate Reasoning 14(4):221–235.10.1016/0888-613X(95)00091-T
Wang, P. 2001. Wason’s cards: what is wrong. In Chen, L., and Zhuo, Y., eds., Proceedings of the Third International Conference on Cognitive Science, 371–375.
Wang, P. 2004b. Problem solving with insufficient resources. International Journal of Uncertainty, Fuzziness and Knowledge-based Systems 12(5):673–700.10.1142/S0218488504003144
Wang, P. 2004c. Toward a unified artificial intelligence. In Papers from the 2004 AAAI Fall Symposium on Achieving Human-Level Intelligence through Integrated Research and Systems, 83–90.
Wang, P. 2006a. Artificial Intelligence: What it is, and what it should be. In Lebiere, C., and Wray, R., eds., Papers from the AAAI Spring Symposium on Between a Rock and a Hard Place: Cognitive Science Principles Meet AI-Hard Problems, 97–102.
Wang, P. 2008. What do you mean by “AI”. In Wang, P.; Goertzel, B.; and Franklin, S., eds., Proceedings of the First Conference on Artificial General Intelligence, 362–373.
Wang, P. 2009. Case-by-case problem solving. In Goertzel, B.; Hitzler, P.; and Hutter, M., eds., Proceedings of the Second Conference on Artificial General Intelligence, 180–185.10.2991/agi.2009.43
Wang, P. 2011. The Assumptions on Knowledge and Resources in Models of Rationality. International Journal of Machine Consciousness 3(1):193–218.10.1142/S1793843011000686
Wang, P. 2012. Theories of Artificial Intelligence – Meta-theoretical considerations. In Wang, P., and Goertzel, B., eds., Theoretical Foundations of Artificial General Intelligence. Paris: Atlantis Press. 305–323.10.2991/978-94-91216-62-6_16