Have a personal or library account? Click to login
Learning and decision-making in artificial animals Cover
Open Access
|Jul 2018

References

  1. Adams, S. S., and Burbeck, S. 2012. Beyond the Octopus: From General Intelligence toward a Human-like Mind. In Theoretical Foundations of Artificial General Intelligence. Springer. 49-65.10.2991/978-94-91216-62-6_4
  2. Avila-García, O., and Cañamero, L. 2005. Hormonal modulation of perception in motivation-based action selection architectures. In Procs of the Symposium on Agents that Want and Like. SSAISB.
  3. Bach, J. 2009. Principles of synthetic intelligence. Oxford University Press.
  4. Bach, J. 2015. Modeling motivation in MicroPsi 2. In AGI 2015 Conference Proceedings, 3-13. Springer.10.1007/978-3-319-21365-1_1
  5. Bear, M. F.; Connors, B. W.; and Paradiso, M. A. 2015. Neuroscience. Wolters Kluwer.
  6. Bolker, B. M. 2008. Ecological models and data in R. Princeton University Press.10.1515/9781400840908
  7. Bostrom, N. 2014. Superintelligence: Paths, Dangers, Strategies. Oxford University Press.
  8. Bouneffouf, D.; Rish, I.; and Cecchi, G. A. 2017. Bandit Models of Human Behavior: Reward Processing in Mental Disorders. In AGI 2017 Conference Proceedings, 237-248. Springer.10.1007/978-3-319-63703-7_22
  9. Buro, M. 1998. From simple features to sophisticated evaluation functions. In International Conference on Computers and Games, 126-145. Springer.10.1007/3-540-48957-6_8
  10. Caswell, H. 2001. Matrix population models. Wiley Online Library. Avaliable at https://www.sinauer.com/media.
  11. Christensen, V., and Walters, C. J. 2004. Ecopath with Ecosim: methods, capabilities and limitations. Ecological modelling 172(2-4):109-139.10.1016/j.ecolmodel.2003.09.003
  12. Dörner, D. 2001. Bauplan für eine Seele. Rororo. Rowohlt-Taschenbuch-Verlag.
  13. Draganski, B., and May, A. 2008. Training-induced structural changes in the adult human brain. Behavioural brain research 192(1):137-142.10.1016/j.bbr.2008.02.01518378330
  14. Fahlman, S. E., and Lebiere, C. 1990. The cascade-correlation learning architecture. In Advances in neural information processing systems, 524-532.
  15. Goertzel, B.; Pennachin, C.; and Geisweiller, N. 2014. The OpenCog Framework. In Engineering General Intelligence, Part 2. Springer. 3-29.10.2991/978-94-6239-030-0_1
  16. Goodfellow, I.; Bengio, Y.; and Courville, A. 2016. Deep Learning. MIT Press. http://www.deeplearningbook.org.
  17. Hammer, P.; Lofthouse, T.; and Wang, P. 2016. The OpenNARS implementation of the non-axiomatic reasoning system. In AGI 2016 Conference Proceedings. Springer. 160-170.10.1007/978-3-319-41649-6_16
  18. Hochreiter, S., and Schmidhuber, J. 1997. Long short-term memory. Neural computation 9(8):1735-1780.10.1162/neco.1997.9.8.17359377276
  19. Insa-Cabrera, J. 2016. Towards a Universal Test of Social Intelligence. Ph.D. Dissertation, Universitat Politècnica de València, Valencia, Spain.
  20. Johnson, M.; Hofmann, K.; Hutton, T.; and Bignell, D. 2016. The Malmo platform for artificial intelligence experimentation. In International joint conference on artificial intelligence (IJCAI), 4246.
  21. Jonsson, A., and Barto, A. G. 2001. Automated state abstraction for options using the U-tree algorithm. In Advances in neural information processing systems, 1054-1060.
  22. Keramati, M., and Gutkin, B. S. 2011. A reinforcement learning theory for homeostatic regulation. In Advances in neural information processing systems, 82-90.
  23. Langton, C. G. 1997. Artificial life: An overview. MIT Press.
  24. LeCun, Y.; Bengio, Y.; and Hinton, G. 2015. Deep learning. nature 521(7553):436.10.1038/nature1453926017442
  25. Lindgren, K., and Verendel, V. 2013. Evolutionary Exploration of the Finitely Repeated Prisoners’ Dilemma-The Effect of Out-of-Equilibrium Play. Games 4(1):1-20.10.3390/g4010001
  26. Mitchell, T. M. 1978. Version spaces: an approach to concept learning. Technical report, STANFORD UNIV, CALIF, DEPT OF COMPUTER SCIENCE.
  27. Niv, Y. 2009. Reinforcement learning in the brain. Journal of Mathematical Psychology 53(3):139-154.10.1016/j.jmp.2008.12.005
  28. Nivel, E.; Thórisson, K. R.; Steunebrink, B. R.; Dindo, H.; Pezzulo, G.; Rodriguez, M.; Hernandez, C.; Ognibene, D.; Schmidhuber, J.; Sanz, R.; et al. 2013. Bounded recursive self-improvement. arXiv preprint arXiv:1312.6764.
  29. Nusser, S. 2009. Robust Learning in Safety-Related Domains. Machine Learning Methods for Solving Safety-Related Application Problems, Otto-von-Guericke-Universität Magdeburg.
  30. Roijers, D. M.; Vamplew, P.; Whiteson, S.; Dazeley, R.; et al. 2013. A Survey of Multi- Objective Sequential Decision-Making. J. Artif. Intell. Res.(JAIR) 48:67-113.10.1613/jair.3987
  31. Rooney, N. J., and Cowan, S. 2011. Training methods and owner-dog interactions: Links with dog behaviour and learning ability. Applied Animal Behaviour Science 132(3):169-177.10.1016/j.applanim.2011.03.007
  32. Russell, S. J., and Zimdars, A. 2003. Q-decomposition for reinforcement learning agents. In Proceedings of the 20th International Conference on Machine Learning (ICML-03), 656-663.
  33. Rusu, A. A.; Rabinowitz, N. C.; Desjardins, G.; Soyer, H.; Kirkpatrick, J.; Kavukcuoglu, K.; Pascanu, R.; and Hadsell, R. 2016. Progressive neural networks. arXiv preprint arXiv:1606.04671.
  34. Schmidhuber, J. 2015. Deep Learning in Neural Networks: An Overview. Neural Networks 61:85-117.10.1016/j.neunet.2014.09.00325462637
  35. Strannegård, C., and Nizamani, A. R. 2016. Integrating Symbolic and Sub-symbolic Reasoning. In AGI 2016 Conference Proceedings, 171-180. Springer.10.1007/978-3-319-41649-6_17
  36. Strannegård, C.; Nizamani, A. R.; Juel, J.; and Persson, U. 2016. Learning and Reasoning in Unknown Domains. Journal of Artificial General Intelligence 7(1):104-127.10.1515/jagi-2016-0002
  37. Sutton, R. S., and Barto, A. G. 1998. Reinforcement learning: An introduction. MIT press.10.1109/TNN.1998.712192
  38. Taylor, J.; Yudkowsky, E.; LaVictoire, P.; and Critch, A. 2016. Alignment for advanced machine learning systems. Machine Intelligence Research Institute.
  39. Thórisson, K. R. 2012. A new constructivist AI: from manual methods to self-constructive systems. In Theoretical Foundations of Artificial General Intelligence. Springer. 145-171.10.2991/978-94-91216-62-6_9
  40. Tuci, E.; Giagkos, A.; Wilson, M.; and Hallam, J., eds. 2016. From Animals to Animats. 1st International Conference on the Simulation of Adaptive Behavior. Springer.10.1007/978-3-319-43488-9
  41. Von Glasersfeld, E. 1995. Radical Constructivism: A Way of Knowing and Learning. Studies in Mathematics Education Series: 6. ERIC.
  42. Wang, P., and Hammer, P. 2015. Assumptions of Decision-Making Models in AGI. In AGI 2015 Conference Proceedings. Springer. 197-207.10.1007/978-3-319-21365-1_21
  43. Watkins, C. J. C. H. 1989. Learning from delayed rewards. Ph.D. Dissertation, King’s College, Cambridge.
  44. Wilson, S. W. 1986. Knowledge growth in an artificial animal. In Adaptive and Learning Systems. Springer. 255-264.10.1007/978-1-4757-1895-9_18
  45. Wilson, S. W. 1991. The animat path to AI. In Meyer, J. A., and Wilson, S. W., eds., From animals to animats: Proceedings of the First International Conference on Simulation of Adaptive Behavior.
  46. Wolfe, N.; Sharma, A.; Drude, L.; and Raj, B. 2017. The Incredible Shrinking Neural Network: New Perspectives on Learning Representations Through The Lens of Pruning. arXiv preprint arXiv:1701.04465.
  47. Yoshida, N. 2017. Homeostatic Agent for General Environment. Journal of Artificial General Intelligence 8(1).10.1515/jagi-2017-0001
  48. Zaremba, W., and Sutskever, I. 2015. Reinforcement learning neural turing machinesrevised. arXiv preprint arXiv:1505.00521.
Language: English
Page range: 55 - 82
Submitted on: May 16, 2017
Accepted on: Jun 13, 2018
Published on: Jul 27, 2018
Published by: Artificial General Intelligence Society
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2018 Claes Strannegård, Nils Svangård, David Lindström, Joscha Bach, Bas Steunebrink, published by Artificial General Intelligence Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.