Have a personal or library account? Click to login
Artificial General Intelligence: Concept, State of the Art, and Future Prospects Cover

Artificial General Intelligence: Concept, State of the Art, and Future Prospects

By: Ben Goertzel  
Open Access
|Dec 2014

References

  1. Achler, T. 2012a. Artificial General Intelligence Begins with Recognition: Evaluating the Flexibility of Recognition. In Theoretical Foundations of Artificial General Intelligence. Springer. 197-217.10.2991/978-94-91216-62-6_11
  2. Achler, T. 2012b. Towards Bridging the Gap Between Pattern Recognition and Symbolic Representation Within Neural Networks. Workshop on Neural-Symbolic Learning and Reasoning, AAAI-2012.
  3. Adams, S.; Arel, I.; Bach, J.; Coop, R.; Furlan, R.; Goertzel, B.; Hall, J. S.; Samsonovich, A.; Scheutz, M.; Schlesinger, M.; et al. 2012. Mapping the landscape of human-level artificial general intelligence. AI Magazine 33(1):25-42.10.1609/aimag.v33i1.2322
  4. Albus, J. S. 2001. Engineering of mind: An introduction to the science of intelligent systems. Wiley.
  5. Alvarado, N.; Adams, S. S.; Burbeck, S.; and Latta, C. 2002. Beyond the Turing test: Performance metrics for evaluating a computer simulation of the human mind. In The 2nd International Conference on Development and Learning, 147-152. IEEE.
  6. Anderson, J. R., and Lebiere, C. 2003. The Newell test for a theory of cognition. Behavioral and Brain Sciences 26(05):587-601.10.1017/S0140525X0300013X15179936
  7. Anselmi, F.; Leibo, J. Z.; Rosasco, L.; Mutch, J.; Tacchetti, A.; and Poggio, T. 2013. Magic Materials: a theory of deep hierarchical architectures for learning sensory representations.
  8. Arel, I.; Rose, D.; and Coop, R. 2009. Destin: A scalable deep learning architecture with application to high-dimensional robust pattern recognition. In Proc. AAAI Fall Symposium on Biologically Inspired Cognitive Architectures, 1150-1157.
  9. Arel, I.; Rose, D.; and Karnowski, T. 2009. A deep learning architecture comprising homogeneous cortical circuits for scalable spatiotemporal pattern inference. In NIPS 2009 Workshop on Deep Learning for Speech Recognition and Related Applications.
  10. Baars, B. J., and Franklin, S. 2009. Consciousness is computational: The LIDA model of global workspace theory. International Journal of Machine Consciousness 1(01):23-32.10.1142/S1793843009000050
  11. Bach, J. 2009. Principles of synthetic intelligence PSI: an architecture of motivated cognition, volume 4. Oxford University Press.10.1093/acprof:oso/9780195370676.001.0001
  12. Baran`es, A., and Oudeyer, P.-Y. 2009. R-IAC: Robust intrinsically motivated exploration and active learning. Autonomous Mental Development, IEEE Transactions on 1(3):155-169.10.1109/TAMD.2009.2037513
  13. Ben-David, S., and Schuller, R. 2003. Exploiting task relatedness for multiple task learning. In Learning Theory and Kernel Machines. Springer. 567-580.10.1007/978-3-540-45167-9_41
  14. Bengio, Y. 2009. Learning deep architectures for AI. Foundations and Trends in Machine Learning 2(1):1-127.10.1561/2200000006
  15. Binet, A., and Simon, T. 1916. The development of intelligence in children: The Binet-Simon Scale. Number 11. Williams & Wilkins Company.10.1037/11069-000
  16. Bostrom, N. 2014. Superintelligence: Paths, Dangers, Strategies. Oxford University Press.
  17. Brooks, R. A. 2002. Flesh and machines: How robots will change us. Pantheon Books New York
  18. Cassimatis, N. 2007. Adaptive algorithmic hybrids for human-level Artificial Intelligence. In Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms, 94-112.
  19. Damer, B.; Newman, P.; Gordon, R.; and Barbalet, T. 2010. The EvoGrid: simulating pre-biotic emergent complexity.
  20. De Garis, H.; Shuo, C.; Goertzel, B.; and Ruiting, L. 2010. A world survey of artificial brain projects, Part I: Large-scale brain simulations. Neurocomputing 74(1):3-29.10.1016/j.neucom.2010.08.004
  21. Duch, W.; Oentaryo, R. J.; and Pasquier, M. 2008. Cognitive Architectures: Where do we go from here? In Proceedings of the First Conference on Artificial General Intelligence, volume 171, 122-136.
  22. Dye, L. 2010. Are Dolphins Also Persons? ABC News, Feb. 24 2010.
  23. Franklin, S., and Graesser, A. 1997. Is it an Agent, or just a Program?: A Taxonomy for Autonomous Agents. In Intelligent agents III: agent theories, architectures, and languages. Springer. 21-35.
  24. Franklin, S.; Strain, S.; Snaider, J.; McCall, R.; and Faghihi, U. 2012. Global workspace theory, its LIDA model and the underlying neuroscience. Biologically Inspired Cognitive Architectures 1:32-43.10.1016/j.bica.2012.04.001
  25. French, R. M. 1996. Subcognition and the Limits of the Turing Test. Machines and thought 11-26.
  26. Frye, J.; Ananthanarayanan, R.; and Modha, D. S. 2007. Towards real-time, mouse-scale cortical simulations. CoSyNe: Computational and Systems Neuroscience, Salt Lake City, Utah.
  27. Gardner, H. 1999. Intelligence reframed: Multiple intelligences for the 21st century. Basic Books.
  28. Gazzaniga, M. S.; Ivry, R. B.; and Mangun, G. R. 2009. Cognitive Neuroscience: The Biology of the Mind. W W Norton.
  29. Goertzel, B., and Pennachin, C. 2007. Artificial General Intelligence. Springer.10.1007/978-3-540-68677-4
  30. Goertzel, B., and Pitt, J. 2012. Nine Ways to Bias Open-Source AGI Toward Friendliness. Journal of Evolution and Technology 22:1.
  31. Goertzel, B., and Wigmore, J. 2011. Cognitive Synergy Is Tricky. Chinese Journal of Mind and Computation.
  32. Goertzel, B.; Lian, R.; Arel, I.; de Garis, H.; and Chen, S. 2010a. A world survey of artificial brain projects, Part II: Biologically inspired cognitive architectures. Neurocomputing 74(1):30-49.
  33. Goertzel, B.; Pennachin, C.; Araujo, S.; Silva, F.; Queiroz, M.; Lian, R.; Silva, W.; Ross, M.; Vepstas, L.; and Senna, A. 2010b. A general intelligence oriented architecture for embodied natural language processing. In 3d Conference on Artificial General Intelligence (AGI-2010). Atlantis Press.10.2991/agi.2010.16
  34. Goertzel, B.; Pitt, J.; Wigmore, J.; Geisweiller, N.; Cai, Z.; Lian, R.; Huang, D.; and Yu, G. 2011. Cognitive Synergy between Procedural and Declarative Learning in the Control of Animated and Robotic Agents Using the OpenCogPrime AGI Architecture. In Proceedings of AAAI-11. 10.1609/aaai.v25i1.7831
  35. Goertzel, B.; Ikl´e, M.; and Wigmore, J. 2012. The Architecture of Human-Like General Intelligence. In Theoretical Foundations of Artificial General Intelligence. Springer. 123-144.10.2991/978-94-91216-62-6_8
  36. Goertzel, B. 2009. OpenCogPrime: A cognitive synergy based architecture for artificial general intelligence. In Proceedings of ICCI’09: 8th IEEE International Conference on Cognitive Informatics, 60-68. IEEE.10.1109/COGINF.2009.5250807
  37. Goertzel, B. 2010. Toward a formal characterization of real-world general intelligence. In Proceedings of the Third Conference on Artificial General Intelligence, 19-24.
  38. Goertzel, B. 2014. Artificial General Intelligence. Japanese Artificial Intelligence Society Magazine, 2014-1.
  39. Gregory, R. J. 2004. Psychological testing: History, principles, and applications. Allyn & Bacon.
  40. Gubrud, M. A. 1997. Nanotechnology and international security. In Fifth Foresight Conference on Molecular Nanotechnology, 1.
  41. Hammer, B., and Hitzler, P. 2007. Perspectives of neural-symbolic integration, volume 77. Springer.10.1007/978-3-540-73954-8
  42. Han, J.; Zeng, S.; Tham, K.; Badgero, M.; and Weng, J. 2002. Dav: A humanoid robot platform for autonomous mental development. In Development and Learning, 2002. Proceedings. The 2nd International Conference on, 73-81. IEEE.
  43. Hawkins, J., and Blakeslee, S. 2007. On intelligence. Macmillan.
  44. Hayes, P., and Ford., K. 1995. Turing Test Considered Harmful. IJCAI-14.
  45. Hern´andez-Orallo, J., and Dowe, D. L. 2010. Measuring universal intelligence: Towards an anytime intelligence test. Artificial Intelligence 174(18):1508-1539.10.1016/j.artint.2010.09.006
  46. Hibbard, B. 2012. Avoiding unintended AI behaviors. In Artificial General Intelligence. Springer. 107-116.10.1007/978-3-642-35506-6_12
  47. Horwitz, B.; Friston, K. J.; and Taylor, J. G. 2000. Neural modeling and functional brain imaging: an overview. Neural networks 13(8):829-846.10.1016/S0893-6080(00)00062-9
  48. Hutter, M. 2005. Universal Artificial Intelligence: Sequential Decisions based on Algorithmic Probability. Springer.
  49. Hutter, M. 2006. Human Knowledge Compression Contest. http://prize.hutter1.net/.
  50. Izhikevich, E. M., and Edelman, G. M. 2008. Large-scale model of mammalian thalamocortical systems. Proc. of the national academy of sciences 105(9):3593-3593.10.1073/pnas.0712231105226516018292226
  51. Jilk, D. J., and Lebiere, C. 2008. SAL: An explicitly pluralistic cognitive architecture. Journal of Experimental and Theoretical Artificial Intelligence 20:197-218.10.1080/09528130802319128
  52. Jurafsky, D., and James, H. 2000. Speech and language processing: An introduction to natural language processing, computational linguistics, and speech.
  53. Just, M. A., and Varma, S. 2007. The organization of thinking: What functional brain imaging reveals about the neuroarchitecture of complex cognition. Cognitive, Affective, and Behavioral Neuroscience 7:153-191.10.3758/CABN.7.3.153
  54. Kaplan, F. 2008. Neurorobotics: an experimental science of embodiment. Frontiers in neuroscience 2(1):22.10.3389/neuro.01.023.2008257008218982102
  55. Koza, J. R. 1992. Genetic programming: on the programming of computers by means of natural selection, volume 1. MIT press.
  56. Krichmar, J. L., and Edelman, G. M. 2006. Principles underlying the construction of brain-based devices. In Proceedings of AISB, volume 6, 37-42.
  57. Kurzweil, R. 2005. The singularity is near: When humans transcend biology. Penguin.
  58. Laird, J. E.; Wray, R.; Marinier, R.; and Langley, P. 2009. Claims and challenges in evaluating human-level intelligent systems. In Proceedings of the Second Conference on Artificial General Intelligence, 91-96.
  59. Laird, J. 2012. The Soar cognitive architecture. MIT Press.10.7551/mitpress/7688.001.0001
  60. Langley, P. 2005. An adaptive architecture for physical agents. In Proceedings of the 2005
  61. IEEE/WIC/ACM International Conference on Web Intelligence, 18-25. IEEE.
  62. Laud, A., and Dejong, G. 2003. The influence of reward on the speed of reinforcement learning. Proc. of the 20th International Conf. on Machine Learning.
  63. Le, Q. V. 2013. Building high-level features using large scale unsupervised learning. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 8595-8598. IEEE.10.1109/ICASSP.2013.6639343
  64. Legg, S., and Hutter, M. 2007a. A collection of definitions of intelligence. Frontiers in Artificial Intelligence and Applications 157:17.
  65. Legg, S., and Hutter, M. 2007b. Universal intelligence: A definition of machine intelligence. Minds and Machines 17(4):391-444.10.1007/s11023-007-9079-x
  66. Legg, S., and Veness, J. 2013. An approximation of the universal intelligence measure. In Algorithmic Probability and Friends. Bayesian Prediction and Artificial Intelligence. Springer. 236-249.10.1007/978-3-642-44958-1_18
  67. Lenat, D. B., and Guha, R. V. 1989. Building large knowledge-based systems; representation and inference in the Cyc project. Addison-Wesley Longman Publishing Co., Inc.
  68. Li, G.; Lou, Z.; Wang, L.; Li, X.; and Freeman, W. J. 2005. Application of chaotic neural model based on olfactory system on pattern recognitions. In Advances in Natural Computation. Springer. 378-381.10.1007/11539087_47
  69. Li, L.; Walsh, T.; and Littman, M. 2006. Towards a unified theory of state abstraction for MDPs. Proc. of the ninth international symposium on AI and mathematics.
  70. Markram, H. 2006. The blue brain project. Nature Reviews Neuroscience 7(2):153-160.10.1038/nrn184816429124
  71. Metta, G.; Sandini, G.; Vernon, D.; Natale, L.; and Nori, F. 2008. The iCub humanoid robot: an open platform for research in embodied cognition. In Proceedings of the 8th workshop on performance metrics for intelligent systems, 50-56. ACM.10.1145/1774674.1774683
  72. Modayil, J., and Kuipers, B. 2007. Autonomous development of a grounded object ontology by a learning robot. In Proceedings of the national conference on Artificial intelligence, volume 22, 1095. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999.
  73. Mugan, J., and Kuipers, B. 2008. Towards the application of reinforcement learning to undirected developmental learning. International Conf. on Epigenetic Robotics.
  74. Mugan, J., and Kuipers, B. 2009. Autonomously Learning an Action Hierarchy Using a Learned Qualitative State Representation. In IJCAI, 1175-1180.
  75. Muggleton, S. 1991. Inductive logic programming. New generation computing 8(4):295-318.10.1007/BF03037089
  76. Nestor, A., and Kokinov, B. 2004. Towards Active Vision in the DUAL Cognitive Architecture. International Journal on Information Theories and Applications 11.
  77. Nilsson, N. J. 2005. Human-level artificial intelligence? Be serious! AI magazine 26(4):68.
  78. Nilsson, N. J. 2007. The physical symbol system hypothesis: status and prospects. In 50 years of artificial intelligence. Springer. 9-17.10.1007/978-3-540-77296-5_2
  79. Oudeyer, P.-Y., and Kaplan, F. 2006. Discovering communication. Connection Science 18(2):189-206.10.1080/09540090600768567
  80. Pfeifer, R., and Bongard, J. 2007. How the body shapes the way we think: a new view of intelligence. MIT press.10.7551/mitpress/3585.001.0001
  81. Reeke Jr, G. N.; Sporns, O.; and Edelman, G. M. 1990. Synthetic neural modeling: theDarwin’series of recognition automata. Proceedings of the IEEE 78(9):1498-1530.10.1109/5.58327
  82. Richardson, M., and Domingos, P. 2006. Markov logic networks. Machine learning 62(1-2):107-136.10.1007/s10994-006-5833-1
  83. Rosbe, J.; Chong, R. S.; and Kieras, D. E. 2001. Modeling with Perceptual and Memory Constraints: An EPIC-Soar Model of a Simplified Enroute Air Traffic Control Task. SOAR Technology Inc. Report.10.1037/e446312006-001
  84. Russell, S. J., and Norvig, P. 2010. Artificial intelligence: a modern approach. Prentice Hall.
  85. Samsonovich, A. V. 2010. Toward a Unified Catalog of Implemented Cognitive Architectures. BICA 221:195-244.
  86. Schmidhuber, J. 1991a. Curious model-building control systems.. Proc. International Joint Conf. on Neural Networks. 10.1109/IJCNN.1991.170605
  87. Schmidhuber, J. 1991b. A possibility for implementing curiosity and boredom in model-building neural controllers. Proc. of the International Conf. on Simulation of Adaptive Behavior: From Animals to Animats.
  88. Schmidhuber, J. 1995. Reinforcement-driven information acquisition in non-deterministic environments. Proc. ICANN’95.
  89. Schmidhuber, J. 2003. Exploring the predictable. In Advances in evolutionary computing. Springer. 579-612.10.1007/978-3-642-18965-4_23
  90. Schmidhuber, J. 2006. Godel machines: Fully Self-Referential Optimal Universal Self-Improvers. In Goertzel, B., and Pennachin, C., eds., Artificial General Intelligence. 119-226.
  91. Searle, J. R. 1980. Minds, brains, and programs. Behavioral and brain sciences 3(03):417-424.10.1017/S0140525X00005756
  92. Seth Baum, B. G., and Goertzel, T. 2011. Technological Forecasting and Social Change. Technological Forecasting and Social Change.
  93. Shapiro, S. C.; Rapaport,W. J.; Kandefer, M.; Johnson, F. L.; and Goldfain, A. 2007. Metacognition in SNePS. AI Magazine 28(1):17.
  94. Shastri, L., and Ajjanagadde, V. 1993. From simple associations to systematic reasoning: A connectionist representation of rules, variables and dynamic bindings using temporal synchrony. Behavioral and brain sciences 16(3):417-451.10.1017/S0140525X00030910
  95. Silver, R.; Boahen, K.; Grillner, S.; Kopell, N.; and Olsen, K. L. 2007. Neurotech for neuroscience: unifying concepts, organizing principles, and emerging tools. The Journal of Neuroscience 27(44):11807-11819.10.1523/JNEUROSCI.3575-07.2007
  96. Sloman, A. 2001. Varieties of affect and the cogaff architecture schema. In Proceedings of the AISB01 symposium on emotions, cognition, and affective computing. The Society for the Study of Artificial Intelligence and the Simulation of Behaviour.
  97. Socher, R.; Huval, B.; Bath, B. P.; Manning, C. D.; and Ng, A. Y. 2012. Convolutional-Recursive Deep Learning for 3D Object Classification. In NIPS, 665-673.
  98. Solomonoff, R. J. 1964a. A formal theory of inductive inference. Part I. Information and control 7(1):1-22.10.1016/S0019-9958(64)90223-2
  99. Solomonoff, R. J. 1964b. A formal theory of inductive inference. Part II. Information and control 7(2):224-254.10.1016/S0019-9958(64)90131-7
  100. Spearman, C. 1904. General Intelligence, Objectively Determined and Measured. The American Journal of Psychology 15(2):201-292.10.2307/1412107
  101. Sun, R., and Zhang, X. 2004. Top-down versus bottom-up learning in cognitive skill acquisition. Cognitive Systems Research 5(1):63-89.10.1016/j.cogsys.2003.07.001
  102. Taylor, M. E.; Kuhlmann, G.; and Stone, P. 2008. Transfer Learning and Intelligence: an Argument and Approach. FRONTIERS IN ARTIFICIAL INTELLIGENCE AND APPLICATIONS 171:326.
  103. Terman, L. M. 1915. The mental hygiene of exceptional children. The Pedagogical Seminary 22(4):529-537.10.1080/08919402.1915.10533983
  104. Thrun, S., and Mitchell, T. 1995. Lifelong robot learning. Robotics and Autonomous Systems.10.1007/978-3-642-79629-6_7
  105. Turing, A. M. 1950. Computing machinery and intelligence. Mind 433-460.10.1093/mind/LIX.236.433
  106. Veness, J.; Ng, K. S.; Hutter, M.; Uther,W.; and Silver, D. 2011. A monte-carlo aixi approximation. Journal of Artificial Intelligence Research 40(1):95-142.10.1613/jair.3125
  107. Wang, P. 2006. Rigid Flexibility: The Logic of Intelligence. Springer.
  108. Wang, P. 2009. Embodiment: Does a Laptop Have a Body? In Proceedings of AGI-09, 74-179.
  109. Weng, J., and Hwang, W.-S. 2006. From neural networks to the brain: Autonomous mental development. Computational Intelligence Magazine, IEEE 1(3):15-31.10.1109/MCI.2006.1672985
  110. Weng, J.; Hwang, W. S.; Zhang, Y.; Yang, C.; and Smith, R. 2000. Developmental humanoids: Humanoids that develop skills automatically. In Proc. The First IEEE-RAS International Conference on Humanoid Robots, 7-8. Citeseer.
  111. Yudkowsky, E. 2008. Artificial intelligence as a positive and negative factor in global risk. In Global catastrophic risks. Oxford University Press. 303 10.1093/oso/9780198570509.003.0021
Language: English
Page range: 1 - 48
Accepted on: Mar 15, 2014
Published on: Dec 30, 2014
Published by: Artificial General Intelligence Society
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2014 Ben Goertzel, published by Artificial General Intelligence Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.