Achler, T. 2012a. Artificial General Intelligence Begins with Recognition: Evaluating the Flexibility of Recognition. In Theoretical Foundations of Artificial General Intelligence. Springer. 197-217.10.2991/978-94-91216-62-6_11
Achler, T. 2012b. Towards Bridging the Gap Between Pattern Recognition and Symbolic Representation Within Neural Networks. Workshop on Neural-Symbolic Learning and Reasoning, AAAI-2012.
Adams, S.; Arel, I.; Bach, J.; Coop, R.; Furlan, R.; Goertzel, B.; Hall, J. S.; Samsonovich, A.; Scheutz, M.; Schlesinger, M.; et al. 2012. Mapping the landscape of human-level artificial general intelligence. AI Magazine 33(1):25-42.10.1609/aimag.v33i1.2322
Alvarado, N.; Adams, S. S.; Burbeck, S.; and Latta, C. 2002. Beyond the Turing test: Performance metrics for evaluating a computer simulation of the human mind. In The 2nd International Conference on Development and Learning, 147-152. IEEE.
Anderson, J. R., and Lebiere, C. 2003. The Newell test for a theory of cognition. Behavioral and Brain Sciences 26(05):587-601.10.1017/S0140525X0300013X15179936
Anselmi, F.; Leibo, J. Z.; Rosasco, L.; Mutch, J.; Tacchetti, A.; and Poggio, T. 2013. Magic Materials: a theory of deep hierarchical architectures for learning sensory representations.
Arel, I.; Rose, D.; and Coop, R. 2009. Destin: A scalable deep learning architecture with application to high-dimensional robust pattern recognition. In Proc. AAAI Fall Symposium on Biologically Inspired Cognitive Architectures, 1150-1157.
Arel, I.; Rose, D.; and Karnowski, T. 2009. A deep learning architecture comprising homogeneous cortical circuits for scalable spatiotemporal pattern inference. In NIPS 2009 Workshop on Deep Learning for Speech Recognition and Related Applications.
Baars, B. J., and Franklin, S. 2009. Consciousness is computational: The LIDA model of global workspace theory. International Journal of Machine Consciousness 1(01):23-32.10.1142/S1793843009000050
Bach, J. 2009. Principles of synthetic intelligence PSI: an architecture of motivated cognition, volume 4. Oxford University Press.10.1093/acprof:oso/9780195370676.001.0001
Baran`es, A., and Oudeyer, P.-Y. 2009. R-IAC: Robust intrinsically motivated exploration and active learning. Autonomous Mental Development, IEEE Transactions on 1(3):155-169.10.1109/TAMD.2009.2037513
Ben-David, S., and Schuller, R. 2003. Exploiting task relatedness for multiple task learning. In Learning Theory and Kernel Machines. Springer. 567-580.10.1007/978-3-540-45167-9_41
Binet, A., and Simon, T. 1916. The development of intelligence in children: The Binet-Simon Scale. Number 11. Williams & Wilkins Company.10.1037/11069-000
Cassimatis, N. 2007. Adaptive algorithmic hybrids for human-level Artificial Intelligence. In Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms, 94-112.
De Garis, H.; Shuo, C.; Goertzel, B.; and Ruiting, L. 2010. A world survey of artificial brain projects, Part I: Large-scale brain simulations. Neurocomputing 74(1):3-29.10.1016/j.neucom.2010.08.004
Duch, W.; Oentaryo, R. J.; and Pasquier, M. 2008. Cognitive Architectures: Where do we go from here? In Proceedings of the First Conference on Artificial General Intelligence, volume 171, 122-136.
Franklin, S., and Graesser, A. 1997. Is it an Agent, or just a Program?: A Taxonomy for Autonomous Agents. In Intelligent agents III: agent theories, architectures, and languages. Springer. 21-35.
Franklin, S.; Strain, S.; Snaider, J.; McCall, R.; and Faghihi, U. 2012. Global workspace theory, its LIDA model and the underlying neuroscience. Biologically Inspired Cognitive Architectures 1:32-43.10.1016/j.bica.2012.04.001
Frye, J.; Ananthanarayanan, R.; and Modha, D. S. 2007. Towards real-time, mouse-scale cortical simulations. CoSyNe: Computational and Systems Neuroscience, Salt Lake City, Utah.
Goertzel, B.; Lian, R.; Arel, I.; de Garis, H.; and Chen, S. 2010a. A world survey of artificial brain projects, Part II: Biologically inspired cognitive architectures. Neurocomputing 74(1):30-49.
Goertzel, B.; Pennachin, C.; Araujo, S.; Silva, F.; Queiroz, M.; Lian, R.; Silva, W.; Ross, M.; Vepstas, L.; and Senna, A. 2010b. A general intelligence oriented architecture for embodied natural language processing. In 3d Conference on Artificial General Intelligence (AGI-2010). Atlantis Press.10.2991/agi.2010.16
Goertzel, B.; Pitt, J.; Wigmore, J.; Geisweiller, N.; Cai, Z.; Lian, R.; Huang, D.; and Yu, G. 2011. Cognitive Synergy between Procedural and Declarative Learning in the Control of Animated and Robotic Agents Using the OpenCogPrime AGI Architecture. In Proceedings of AAAI-11. 10.1609/aaai.v25i1.7831
Goertzel, B.; Ikl´e, M.; and Wigmore, J. 2012. The Architecture of Human-Like General Intelligence. In Theoretical Foundations of Artificial General Intelligence. Springer. 123-144.10.2991/978-94-91216-62-6_8
Goertzel, B. 2009. OpenCogPrime: A cognitive synergy based architecture for artificial general intelligence. In Proceedings of ICCI’09: 8th IEEE International Conference on Cognitive Informatics, 60-68. IEEE.10.1109/COGINF.2009.5250807
Goertzel, B. 2010. Toward a formal characterization of real-world general intelligence. In Proceedings of the Third Conference on Artificial General Intelligence, 19-24.
Han, J.; Zeng, S.; Tham, K.; Badgero, M.; and Weng, J. 2002. Dav: A humanoid robot platform for autonomous mental development. In Development and Learning, 2002. Proceedings. The 2nd International Conference on, 73-81. IEEE.
Hern´andez-Orallo, J., and Dowe, D. L. 2010. Measuring universal intelligence: Towards an anytime intelligence test. Artificial Intelligence 174(18):1508-1539.10.1016/j.artint.2010.09.006
Horwitz, B.; Friston, K. J.; and Taylor, J. G. 2000. Neural modeling and functional brain imaging: an overview. Neural networks 13(8):829-846.10.1016/S0893-6080(00)00062-9
Izhikevich, E. M., and Edelman, G. M. 2008. Large-scale model of mammalian thalamocortical systems. Proc. of the national academy of sciences 105(9):3593-3593.10.1073/pnas.0712231105226516018292226
Jilk, D. J., and Lebiere, C. 2008. SAL: An explicitly pluralistic cognitive architecture. Journal of Experimental and Theoretical Artificial Intelligence 20:197-218.10.1080/09528130802319128
Jurafsky, D., and James, H. 2000. Speech and language processing: An introduction to natural language processing, computational linguistics, and speech.
Just, M. A., and Varma, S. 2007. The organization of thinking: What functional brain imaging reveals about the neuroarchitecture of complex cognition. Cognitive, Affective, and Behavioral Neuroscience 7:153-191.10.3758/CABN.7.3.153
Laird, J. E.; Wray, R.; Marinier, R.; and Langley, P. 2009. Claims and challenges in evaluating human-level intelligent systems. In Proceedings of the Second Conference on Artificial General Intelligence, 91-96.
Laud, A., and Dejong, G. 2003. The influence of reward on the speed of reinforcement learning. Proc. of the 20th International Conf. on Machine Learning.
Le, Q. V. 2013. Building high-level features using large scale unsupervised learning. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 8595-8598. IEEE.10.1109/ICASSP.2013.6639343
Legg, S., and Hutter, M. 2007b. Universal intelligence: A definition of machine intelligence. Minds and Machines 17(4):391-444.10.1007/s11023-007-9079-x
Legg, S., and Veness, J. 2013. An approximation of the universal intelligence measure. In Algorithmic Probability and Friends. Bayesian Prediction and Artificial Intelligence. Springer. 236-249.10.1007/978-3-642-44958-1_18
Lenat, D. B., and Guha, R. V. 1989. Building large knowledge-based systems; representation and inference in the Cyc project. Addison-Wesley Longman Publishing Co., Inc.
Li, G.; Lou, Z.; Wang, L.; Li, X.; and Freeman, W. J. 2005. Application of chaotic neural model based on olfactory system on pattern recognitions. In Advances in Natural Computation. Springer. 378-381.10.1007/11539087_47
Li, L.; Walsh, T.; and Littman, M. 2006. Towards a unified theory of state abstraction for MDPs. Proc. of the ninth international symposium on AI and mathematics.
Metta, G.; Sandini, G.; Vernon, D.; Natale, L.; and Nori, F. 2008. The iCub humanoid robot: an open platform for research in embodied cognition. In Proceedings of the 8th workshop on performance metrics for intelligent systems, 50-56. ACM.10.1145/1774674.1774683
Modayil, J., and Kuipers, B. 2007. Autonomous development of a grounded object ontology by a learning robot. In Proceedings of the national conference on Artificial intelligence, volume 22, 1095. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999.
Mugan, J., and Kuipers, B. 2008. Towards the application of reinforcement learning to undirected developmental learning. International Conf. on Epigenetic Robotics.
Nestor, A., and Kokinov, B. 2004. Towards Active Vision in the DUAL Cognitive Architecture. International Journal on Information Theories and Applications 11.
Nilsson, N. J. 2007. The physical symbol system hypothesis: status and prospects. In 50 years of artificial intelligence. Springer. 9-17.10.1007/978-3-540-77296-5_2
Reeke Jr, G. N.; Sporns, O.; and Edelman, G. M. 1990. Synthetic neural modeling: theDarwin’series of recognition automata. Proceedings of the IEEE 78(9):1498-1530.10.1109/5.58327
Rosbe, J.; Chong, R. S.; and Kieras, D. E. 2001. Modeling with Perceptual and Memory Constraints: An EPIC-Soar Model of a Simplified Enroute Air Traffic Control Task. SOAR Technology Inc. Report.10.1037/e446312006-001
Schmidhuber, J. 1991b. A possibility for implementing curiosity and boredom in model-building neural controllers. Proc. of the International Conf. on Simulation of Adaptive Behavior: From Animals to Animats.
Shastri, L., and Ajjanagadde, V. 1993. From simple associations to systematic reasoning: A connectionist representation of rules, variables and dynamic bindings using temporal synchrony. Behavioral and brain sciences 16(3):417-451.10.1017/S0140525X00030910
Silver, R.; Boahen, K.; Grillner, S.; Kopell, N.; and Olsen, K. L. 2007. Neurotech for neuroscience: unifying concepts, organizing principles, and emerging tools. The Journal of Neuroscience 27(44):11807-11819.10.1523/JNEUROSCI.3575-07.2007
Sloman, A. 2001. Varieties of affect and the cogaff architecture schema. In Proceedings of the AISB01 symposium on emotions, cognition, and affective computing. The Society for the Study of Artificial Intelligence and the Simulation of Behaviour.
Socher, R.; Huval, B.; Bath, B. P.; Manning, C. D.; and Ng, A. Y. 2012. Convolutional-Recursive Deep Learning for 3D Object Classification. In NIPS, 665-673.
Sun, R., and Zhang, X. 2004. Top-down versus bottom-up learning in cognitive skill acquisition. Cognitive Systems Research 5(1):63-89.10.1016/j.cogsys.2003.07.001
Taylor, M. E.; Kuhlmann, G.; and Stone, P. 2008. Transfer Learning and Intelligence: an Argument and Approach. FRONTIERS IN ARTIFICIAL INTELLIGENCE AND APPLICATIONS 171:326.
Veness, J.; Ng, K. S.; Hutter, M.; Uther,W.; and Silver, D. 2011. A monte-carlo aixi approximation. Journal of Artificial Intelligence Research 40(1):95-142.10.1613/jair.3125
Weng, J., and Hwang, W.-S. 2006. From neural networks to the brain: Autonomous mental development. Computational Intelligence Magazine, IEEE 1(3):15-31.10.1109/MCI.2006.1672985
Weng, J.; Hwang, W. S.; Zhang, Y.; Yang, C.; and Smith, R. 2000. Developmental humanoids: Humanoids that develop skills automatically. In Proc. The First IEEE-RAS International Conference on Humanoid Robots, 7-8. Citeseer.
Yudkowsky, E. 2008. Artificial intelligence as a positive and negative factor in global risk. In Global catastrophic risks. Oxford University Press. 303 10.1093/oso/9780198570509.003.0021