Have a personal or library account? Click to login
Flexural Behaviour of Rice Husk Biochar and Metakaolin Modified Concrete Beam Cover

Flexural Behaviour of Rice Husk Biochar and Metakaolin Modified Concrete Beam

Open Access
|Dec 2025

References

  1. Ahmad, S., Khushnood, R. A., Jagdale, P., Tulliani, J. M., Ferro, G. A. 2015. High performance self-consolidating cementitious composites by using micro carbonized bamboo particles. Materials & Design, 76, pp. 223-229.
  2. Akram, M. U., Shahzad, M. K., Aslam, M., Jan, T. A., Sattar, T., Sibghatullah, H. M. 2024. Investigating the Effect of Rice Husk Biochar on Mechanical Properties and Chemical Resistance of Concrete. Southern Journal of Engineering & Technology, 1(1), pp. 216-229.
  3. Aslani, A., Hachem-Vermette, C., Zahedi, R. 2023. Environmental impact assessment and potentials of material efficiency using by-products and waste materials. Construction and Building Materials, 378, p, 131197.
  4. ASTM C618, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, https://store.astm.org/c0618-22.html
  5. Bhatia, S. K., Palai, A. K., Kumar, A., Bhatia, R. K., Patel, A. K., Thakur, V. K., Yang, Y. H. 2021. Trends in renewable energy production employing biomass-based biochar. Bioresource Technology, 340, p.125644.
  6. Chachar, Z. A., Ali, I., Raza, M. S., Das Narwani, T., Raza, I., Hussain, M. 2022. Flexural behavior of reinforced concrete beams by using rice husk ash as partial replacement of fine aggregates in cement concrete. J. Kejuruter, 34, p. 599-604.
  7. Chen, L., Wang, L., Zhang, Y., Ruan, S., Mechtcherine, V., & Tsang, D. C. 2022. Roles of biochar in cement-based stabilization/solidification of municipal solid waste incineration fly ash. Chemical Engineering Journal, 430, p. 132972.
  8. Cheng, D., Reiner, D. M., Yang, F., Cui, C., Meng, J., Shan, Y., Guan, D. 2023. Projecting future carbon emissions from cement production in developing countries. Nature Communications, 14(1), p. 8213.
  9. Cuthbertson, D., Berardi, U., Briens, C., Berruti, F. 2019. Biochar from residual biomass as a concrete filler for improved thermal and acoustic properties. Biomass and bioenergy, 120, pp. 77-83.
  10. Danish, A., Mosaberpanah, M. A., Salim, M. U., Ahmad, N., Ahmad, F., Ahmad, A. 2021. Reusing biochar as a filler or cement replacement material in cementitious composites: a review. Construction and building materials, 300, p. 124295.
  11. Dinakar, P., Sahoo, P. K., Sriram, G. 2013. Effect of metakaolin content on the properties of high strength concrete. International Journal of Concrete Structures and Materials, 7(3), pp. 215-223.
  12. Dixit, A., Verma, A., Dai Pang, S. 2021. Dual waste utilization in ultra-high performance concrete using biochar and marine clay. Cement and Concrete Composites, 120, p. 104049.
  13. El-Diadamony, H., Amer, A. A., Sokkary, T. M., El-Hoseny, S. 2018. Hydration and characteristics of metakaolin pozzolanic cement pastes. HBRC journal, 14(2), p. 150-158.
  14. El-Sayed, T. A., Erfan, A. M., El-Naby, R. M. A. 2019. Flexural behavior of RC beams by using agricultural waste as a cement reinforcement materials. J. Eng. Res. Rep, 7(1), pp. 1-12.
  15. Falliano, D., De Domenico, D., Sciarrone, A., Ricciardi, G., Restuccia, L., Ferro, G., Gugliandolo, E. 2020. Influence of biochar additions on the fracture behavior of foamed concrete. Fracture and Structural Integrity, 14(51), pp. 189-198.
  16. Fapohunda, C., Akinbile, B., Shittu, A. 2017. Structure and properties of mortar and concrete with rice husk ash as partial replacement of ordinary Portland cement–A review. International Journal of Sustainable Built Environment, 6(2), pp. 675-692.
  17. Ghosal, S., Pani, P. K., Pattanaik, R. R., Ghosal, M. K. 2022. Mechanical characterization of concrete with rice husk-based biochar as sustainable cementitious admixture. In Recent Advances in Mechanical Engineering, pp. 227-233.
  18. Goel, C., Mohan, S., Dinesha, P. 2021. CO2 capture by adsorption on biomass-derived activated char: A review. Science of The Total Environment, 798, p. 149296.
  19. Gupta, S., Kashani, A. 2021. Utilization of biochar from unwashed peanut shell in cementitious building materials–Effect on early age properties and environmental benefits. Fuel Processing Technology, 218, p. 106841.
  20. Gupta, S., Kua, H. W., Dai Pang, S. 2018a. Biochar-mortar composite: Manufacturing, evaluation of physical properties and economic viability. Construction and Building Materials, 167, p. 874-889.
  21. Gupta, S., Kua, H. W., Koh, H. J. 2018b. Application of biochar from food and wood waste as green admixture for cement mortar. Science of the total environment, 619, pp. 419-435.
  22. IS 383-2016, Coarse and fine aggregate for concrete, https://archive.org/details/gov.in.is.383.2016
  23. IS 4031, Method of Physical Tests for Hydraulic Cement, https://law.resource.org/pub/in/bis/S03/is.4031.1.1996.pdf
  24. IS: 10262-2019, Concrete mix Proportioning- Guidelines, https://law.resource.org/pub/in/bis/S03/is.10262.2009.pdf
  25. IS: 12269-1987, Ordinary Portland Cement, 53 Grade — Specification, https://law.resource.org/pub/in/bis/S03/is.12269.1987.pdf
  26. IS: 2386, Methods of Test for Aggregates for Concrete, https://law.resource.org/pub/in/bis/S03/is.2386.1.1963.pdf
  27. IS: 516-2021, Hardened concrete methods of test part 1 testing of strength of hardened concrete section 1 compressive, flexural and split tensile strength, https://archive.org/details/gov.in.is.516.1.1.2021
  28. Ma, Z., Yang, Y., Wu, Y., Xu, J., Peng, H., Liu, X., Wang, S. 2019. In-depth comparison of the physicochemical characteristics of bio-char derived from biomass pseudo components: Hemicellulose, cellulose, and lignin. Journal of Analytical and Applied Pyrolysis, 140, pp. 195-204.
  29. Maljaee, H., Madadi, R., Paiva, H., Tarelho, L., Ferreira, V. M. 2021. Incorporation of biochar in cementitious materials: A roadmap of biochar selection. Construction and Building Materials, 283, p. 122757.
  30. Mohamed, A. M., Tayeh, B. A. 2024. Metakaolin in ultra-high-performance concrete: A critical review of its effectiveness as a green and sustainable admixture. Case Studies in Construction Materials, 21, p. e03967.
  31. Muthukrishnan, S., Gupta, S., Kua, H. W. 2019. Application of rice husk biochar and thermally treated low silica rice husk ash to improve physical properties of cement mortar. Theoretical and applied fracture mechanics, 104, p. 102376.
  32. Narmanova, R., Yespanova, I., Kanzhar, S., Yusupova, L., Abildaev, N. 2024. Effect of rice husk biochar additive on concrete properties. In AIP Conference Proceedings, 3243(1), p. 020055.
  33. Raj, B., Simon, K. M., Baburajan, R. 2023. Effect of supplementary cementitious materials on properties of self-compacting concrete. In International Conference on Structural Engineering and Construction Management, pp. 1-12.
  34. Rashid, S., Raghav, A., Goyal, A., AB, D. R., Singh, M. 2024. Biochar as a sustainable additive in cementitious composites: a comprehensive analysis of properties and environmental impact. Industrial Crops and Products, 209, p. 118044.
  35. Senadheera, S. S., Gupta, S., Kua, H. W., Hou, D., Kim, S., Tsang, D. C., Ok, Y. S. 2023. Application of biochar in concrete– a review. Cement and Concrete Composites, 143, p. 105204.
  36. Shukla, S. S., Chava, R., Appari, S., Kuncharam, B. V. R. 2022. Sustainable use of rice husk for the cleaner production of value-added products. Journal of Environmental Chemical Engineering, 10(1), p. 106899.
  37. Sirico, A., Bernardi, P., Belletti, B., Malcevschi, A., Dalcanale, E., Domenichelli, I., Moretti, E. 2020. Mechanical characterization of cement-based materials containing biochar from gasification. Construction and Building Materials, 246, p.118490.
  38. Song, N., Li, Z., Wang, S., Li, G. 2023. Biochar as internal curing material to prepare foamed concrete. Construction and Building Materials, 377, p. 131030.
  39. Suarez-Riera, D., Restuccia, L., Ferro, G. A. 2020. The use of Biochar to reduce the carbon footprint of cement-based materials. Procedia Structural Integrity, 26, pp. 199-210.
  40. Tan, K., Pang, X., Qin, Y., Wang, J. 2020. Properties of cement mortar containing pulverized biochar pyrolyzed at different temperatures. Construction and Building Materials, 263, p. 120616.
  41. Wang, L., Chen, L., Poon, C. S., Wang, C. H., Ok, Y. S., Mechtcherine, V., Tsang, D. C. 2021. Roles of biochar and CO2 curing in sustainable magnesia cement-based composites. ACS Sustainable Chemistry & Engineering, 9(25), pp. 8603-8610.
  42. Wang, L., Chen, L., Tsang, D. C., Guo, B., Yang, J., Shen, Z., Poon, C. S. 2020. Biochar as green additives in cement-based composites with carbon dioxide curing. Journal of Cleaner Production, 258, p. 120678.
  43. Weng, T. L., Lin, W. T., Cheng, A. 2013. Effect of Metakaolin on strength and efflorescence quantity of cement-based composites. The Scientific World Journal, 2013(1), p. 606524.
  44. Yang, X., Wang, X. Y. 2021. Hydration-strength-durability-workability of biochar-cement binary blends. Journal of Building Engineering, 42, p.103064.
  45. Zhang, S., Zhou, Y., Sun, J., Han, F. 2021. Effect of ultrafine metakaolin on the properties of mortar and concrete. Crystals, 11(6), p. 665.
Language: English
Page range: 292 - 302
Submitted on: Aug 31, 2025
|
Accepted on: Sep 5, 2025
|
Published on: Dec 15, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Beaula Jasmine Rajamohan, S. Venkateswaran, S. Vishnuvardhan, published by University of Oradea, Civil Engineering and Architecture Faculty
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.